EmPower: An Efficient Load Balancing
Approach For Massive Dynamic
Contingency Analysis in Power Systems

O

SIDDHARTHA KUMAR KHAITAN
JAMES D. MCCALLEY

SKHAITAN@IASTATE.EDU
ELECTRICAL AND COMPUTER ENGINEERING
IOWA STATE UNIVERSITY, AMES, IA.

This work was supported in part by DOE OE subcontract B601014.

mailto:skhaitan@iastate.edu

EmPower: Efficient load balancing
approach for massive dynamic
contingency analysis in Power

systems.

Motivation

Static Scheduling

Master-Slave Scheduling
Work-stealing Based Scheduling
Implementations and Results

Modern power systems: large and complex
Requirement of N-k contingency analysis
Contingency analysis is computationally intensive

Sequential processing insufficient. Must use parallel
platforms for higher throughput.

Parallelization brings need for effective scheduling
for load balancing: to avoid resource wastage.

Example Contingency Time Distribution

O

Histogram of 3000 contingency times

400 -

350

Frequency
S 5 8 % 8

o
o

o
|

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
Contingency time (s)

Static Scheduling
O

 Statically assign tasks to available processors.

Main Idea:

* The finish time of the schedule is the time when the last job
finishes.

Static Allocation: Initially tasks are equally distributed.

As time progresses...

free, waiting...

As time progresses...

free, waiting... free, waiting...

P1 and P3, but they have to wait for last-finishing processor...

Input: A task-list T and a processor-list P
Output: A static allocation of tasks to the processors
while True do
foreach processor p in P do
if T s empty then
break;
end
Remove a task t from T';
Allocate t on p:

end

end

Static Scheduling Algorithm

Advantages:

No overhead of online
scheduling

No processor needs to
act as scheduler

Good if task lengths are
equal.

Disadvantages:

Very poor load
balancing

Free processors have to
wait, when done

Processors with extra
tasks get high load.

Master-slave Scheduling

O

« One processor is used as the master and others as slave.

Main Idea:

« Master assigns tasks to each of the slaves.

* When a slave finishes a task, it requests new task from the
master.

e The finish time of the schedule is the time when the last job
finishes.

T
T
T
T
T
T
T
T
T
T
T
T

Before beginning master has all the tasks.
14

T
T
T
T
T
T
T
T
T

Initially master assigns task to each slave.
15

Running
tasks

a O

tasks

P2 is free. It requests from master....
16

T
T
T
T
T
T
T
T

Master allocates a task to P2....
17

Running
tasks

tasks
o

Both P1 and Pn-1 are free and demand tasks=> contention. Locking required

18

Inpuot: A task-hist T and a slave processor-list 5§ and a Master-node m
Output: A |oad-balanced (best-effon) allocation of tasks to processors
& Initialization;
foreach Skave-Processor g in § do
il T ix empry then
| break;
enid
Hemove a task ¢ from T,
Assign t o &

end

Algorithm for Master-node m

while T i nor empry do

Wait for the @sk-request from a slave;

il a mask-request arrives from slave & then
Femove a task ¢ from T ;

Allocale ¢t to &

end

end
Algorithm for any slave-node = -
while dhere v a sask w0 be run do
Fimish the task;

Hequest a tsk from m;
il no sxsk iy availeble then

| break:
end

end

Master-Slave Scheduling Algorithm

Advantages:

Overcomes limitation of
static-scheduling by
providing better load
balancing

No mutual
communication
between slaves => low-
overhead

Disadvantages:

Master node does no
useful work => waste.

If multiple slaves
request from master
simultaneously =>
contention.

Work-stealing Based
Scheduling

O

 All tasks hold task-queues and start their work.

Main Idea:

« A free node (“thief”) steals tasks from another node (“victim”),
which has excess tasks.

« Uses double-ended queue: stealing request can be addressed
without waiting for finishing of current task.

 Efficient in space, time and communication overhead [BL99].

Work-stealing: Initially tasks are equally distributed.

As time progresses...

P3 is free, steals tasks from P2.
NOTE: P2 is not interrupted!

P3 receives the task..

Similarly P1 steals task.....
To avoid multiple processors stealing, lock is required.

Inpui: A processor-list P and a task-list T
Dutput: A best-effort load-balanced allocation of available tasks on
PIOCESS0TS
Hnitialization Sep
while Trus do
foreach Processar pin P do
il T ix empey then
| break;
end
Femove a task rom T, ket the task be ¢ ;
Assipn the fask ¢ to
emid

end
SEach processor has two threads: 1. executor thread and 2. polling
thread
For execuior thread on processor p ;
whike p hay wnfinished asks do
foreach wanished sk ¢ oo p do
| Complete the task ¢ ;
end
foresch ¢’ i P-{p} do
Try stealing a task from processor p° ;
il The seealing way swccessful then
Assign stolen task to processor po;
bireak;
end
end

end

For polling thread on processor p o,

‘whik Truz do

if o semdy g siealing request then

il p has an wnsnrred wask then
Let ¢t be such task ;
Remowve ¢ from task list of p ;
Send i p'

| Retun NULL to processor p' ;
enid

end

end
Wait on a bamier for all the processors;
Terminate all theeads and all processors;

Advantages:
Fine load-balancing
No wastage of nodes
Widely used.

No contention at a
single master.

Disadvantages:

Each processor can
communicate with any
other processor: special
topology reqd.

In worst-case,
communication
overhead can become
high.
Termination-detection
more challenging.

Implementation

O

Techniques Implemented

MPI+Multithreaded Master-slave and Work-stealing

EmPower Approach

(Flow-diagram)

Single Contingency Massive Contingency Load-Balancing
Analysis (C++) Analysis (MPI in C++) (MPI & p-threads in C++)
v' Industry Standard Data I/O v" Scaling to large Techniques
v Bus/Branch and Node/Breaker number of > Static
v' Sparse Data Structure contingencies > Master-Slave
v Steady State and Time Domain v' Parallelization v" Work-stealing
v' Analysis N N
. \‘> Implementation Platform { ™ \‘:; Optimizations
Efficient Numerical Algorithms: [777% | » OpenMP [T | v Multi-threading
v' Integrator > GPU v Mutex-Locks
v Non-linear Solver v MPI
v Linear Solver

MPI+Multithreaded Implementation

(Flow-diagram)

———

Process
ID (rank) 0 1 e K-1

o
S ———————

Multi- 'IF ===y
threading i i i
ST =azmommmeees r-———————-- 4 mmm———————— r-———————-- 4 mmm———————— ro————————- 4

TNsL TToEe i : : L : : i
i Worker | Polling i i Worker | Polling i i Worker i Polling]
i Thread | Thread i i Thread i Thread i i Thread | Thread i
: : : : : :

Node 0 Node 1 Node K-1

MPI is a standardized, vendor-independent and
portable library

MPI is a de-facto industry standard

It allows easy integration with C++ and hence, is
suitable for code reuse, smaller development time
and time-to-market.

Distributed computing leads to high scalability.

Thus, MPI suits the design goal of EmPower of easy
deployment in real-life systems.

Each processor executes with two threads
Executor thread, which does actual work
Polling thread, which polls for steal requests from others

This enables non-blocking implementation.

For implementation of multithreading, we use
POSIX threads: shared memory reduces
communication costs.

Mutex locks for protecting critical sections
Infrequent polling in beginning to reduce overhead.

Mutex Lock Concept

V.

~

Mutex
Variable

™

\

————————————————

1 Task Queue
— 3 Of Victim

blocked

Simulation Time (seconds)

Master-slave Scheduling

No. of Contingencies P=8 P=12 | P=16 | P=24 | P=32
10000 18550 | 11757 | 8595 5599 4194
20000 35293 | 22370 | 16469 | 11245 | 7970
30000 52889 | 333606 | 24508 | 16825 12082
EmPower Approach
Simulation Time (seconds)
No. of Contingencies P=8 P=12 | P=16 | P=24 | P=32
10000 15983 | 10254 | 7989 5232 3929
20000 30594 | 20108 | 15221 | 10707 | 7657
30000 45846 | 31246 | 22832 | 16011 | 11578

Amount of Time Saved

Using EmPower Approach
Over Master-slave Scheduling

8000
2000 10000 =1 20000 EEEEE 30000 M.

6000
5000
4000
3000
2000
1 000 ..

8 12 16 24 32
Number of Processors

Time (seconds)

For 30000 contingencies on 8 processors, savings of almost 2 hours!

Weak Scaling Results

Master-slave and EmPower Approach
(Baseline: Master-slave with 8 processors)

Normalized # processors

Normalized # processors

Master Slave TecL]:mi.quej Work Stealing (EmPower)
P=8 | P=12 | P=16 | P=24 | P=32 P=8 | P=12 | P=l6 | P=24 | P=32
10000 1.00 1.58 2.16 3.31 4.42 1.16 1.81 2.32 3.55 4.72
20000 1.00 1.58 2.14 3.14 443 1.15 1.76 232 3.30 4.61
30000 1.00 1.59 2.16 3.14 4.38 1.15 1.69 232 3.30 4.57
5 5 5
10000 contingencieV 20000 contingencies 30000 contingencies
4 / 4 / 4 /
2] / 3 /
?z 3 é 3 '?3 3
o —+—Master-slave | § —+—Master-slave | § ——Master-slave
v 5 —B-EmPower @ 5 —-EmPower 7 5 =—-EmPower
1 / T T 1 / T T 1 1 / T T 1
1 2 3 4 1 2 3 4 2 3 4

Normalized # processors

Weak Scaling Results

EmPower Approach

(Baseline: EmPower with 8 processors)

3 12 16 24 32

10000 | 1.00 | 1.56 | 2.00 | 3.05 | 4.07
20000 | 1.00 | 1.52 | 2.01 | 2.86 | 4.00
30000 | 1.00 | 1.39 | 2.01 | 2.86 | 3.96

EmPower weak scaling

S
5 ——10000
3 -m-20000
v
=4=30000
1 I |
1 2 3 4

Normalized # processors

Use of HPC in contingency analysis necessitates load
balancing approaches

EmPower outperforms conventional scheduling
techniques and leads to significant time savings,
which translates into energy saving and economic
gains

Uses efficient combination of MPI and
multithreading

Recent results on up to 128 processors further
confirms good scalability of EmPower.

Thank You!
O

Extra Slides

Multiple-Master, slave scheduling

O

» A variant of master-slave scheduling

» Uses multiple masters to avoid contention on the
master

» Disadvantages:

Many nodes, which are used as master do not do any useful
work.

If one master exhausts tasks, have to request from another
master=> higher latency.

