
SIDDHARTHA KUMAR KHAITAN

JAMES D. MCCALLEY

S K H A I T A N @ I A S T A T E . E D U

E L E C T R I C A L A N D C O M P U T E R E N G I N E E R I N G

I O W A S T A T E U N I V E R S I T Y , A M E S , I A .

EmPower: An Efficient Load Balancing
Approach For Massive Dynamic

Contingency Analysis in Power Systems

This work was supported in part by DOE OE subcontract B601014.

mailto:skhaitan@iastate.edu

2

EmPower: Efficient load balancing
approach for massive dynamic
contingency analysis in Power

systems.

Presentation Plan

 Motivation

 Static Scheduling

 Master-Slave Scheduling

 Work-stealing Based Scheduling

 Implementations and Results

3

Motivation

 Modern power systems: large and complex

 Requirement of N-k contingency analysis

 Contingency analysis is computationally intensive

 Sequential processing insufficient. Must use parallel
platforms for higher throughput.

 Parallelization brings need for effective scheduling
for load balancing: to avoid resource wastage.

4

Example Contingency Time Distribution

5

Static Scheduling

Main Idea:

• Statically assign tasks to available processors.

• The finish time of the schedule is the time when the last job

finishes.

6

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Static Allocation: Initially tasks are equally distributed.

7

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

As time progresses…

8

P1 P2 P3 Pn

T T

T

T

T

T

T

T

T

T

As time progresses…

free, waiting…

9

P1 P2 P3 Pn

T

T

T

T

T

T

T

P1 and P3, but they have to wait for last-finishing processor…

free, waiting… free, waiting…

10

Static Scheduling Algorithm

11

Static Scheduling: Summary

Advantages:

1. No overhead of online
scheduling

2. No processor needs to
act as scheduler

3. Good if task lengths are
equal.

Disadvantages:

1. Very poor load
balancing

2. Free processors have to
wait, when done

3. Processors with extra
tasks get high load.

12

Master-slave Scheduling

Main Idea:

• One processor is used as the master and others as slave.

• Master assigns tasks to each of the slaves.

• When a slave finishes a task, it requests new task from the

master.

• The finish time of the schedule is the time when the last job
finishes.

13

P1

T

T

T

T

T

T

T

T

T

T

T

T

Master P2 Pn-1

Before beginning master has all the tasks.

14

P1

T

T

T

T

T

T

T

T

T

T T T

Master P2 Pn-1

Initially master assigns task to each slave.

Running
tasks

15

P1

T

T

T

T

T

T

T

T

T

T T

Master P2 Pn-1

P2 is free. It requests from master….

Running
tasks

16

P1

T

T

T

T

T

T

T

T

T T T

Master P2 Pn-1

Master allocates a task to P2….

Running
tasks

17

P1

T

T

T

T

T

T

T

T

T

Master P2 Pn-1

Both P1 and Pn-1 are free and demand tasks=> contention. Locking required

Running
tasks

18

Master-Slave Scheduling Algorithm
19

Master-slave scheduling: Summary

Advantages:

1. Overcomes limitation of
static-scheduling by
providing better load
balancing

2. No mutual
communication
between slaves => low-
overhead

Disadvantages:

1. Master node does no
useful work => waste.

2. If multiple slaves
request from master
simultaneously =>
contention.

20

Work-stealing Based
Scheduling

Main Idea:

• All tasks hold task-queues and start their work.

• A free node (“thief”) steals tasks from another node (“victim”),

which has excess tasks.

• Uses double-ended queue: stealing request can be addressed
without waiting for finishing of current task.

• Efficient in space, time and communication overhead [BL99].

 [BL99] R. Blumofe and C. Leiserson, “Scheduling multithreaded computations by work stealing”, JACM 1999.

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Work-stealing: Initially tasks are equally distributed.

22

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

As time progresses…

23

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

P3 is free, steals tasks from P2.
NOTE: P2 is not interrupted!

24

P1 P2 P3 Pn

T

T

T

T

T

T

T

T T

T

T

T

T

P3 receives the task..

25

P1 P2 P3 Pn

T

T

T

T

T T

T

T

T

Similarly P1 steals task…..
To avoid multiple processors stealing, lock is required.

26

Work-Stealing Scheduling Algorithm

Work-stealing

Advantages:

1. Fine load-balancing

2. No wastage of nodes

3. Widely used.

4. No contention at a
single master.

Disadvantages:

1. Each processor can
communicate with any
other processor: special
topology reqd.

2. In worst-case,
communication
overhead can become
high.

3. Termination-detection
more challenging.

28

Implementation

Platform Techniques Implemented

MPI+Multithreaded Master-slave and Work-stealing

29

 Industry Standard Data I/O
 Bus/Branch and Node/Breaker
 Sparse Data Structure
 Steady State and Time Domain
 Analysis

Efficient Numerical Algorithms:
 Integrator
 Non-linear Solver
 Linear Solver

Single Contingency
 Analysis (C++)

Single Contingency
 Analysis (C++)

Massive Contingency
 Analysis (MPI in C++)
Massive Contingency

 Analysis (MPI in C++)
Load-Balancing

(MPI & p-threads in C++)
Load-Balancing

(MPI & p-threads in C++)

 Scaling to large
 number of
 contingencies
 Parallelization

Implementation Platform
 OpenMP
 GPU
 MPI

Techniques
 Static
 Master-Slave
 Work-stealing

Optimizations
 Multi-threading
 Mutex-Locks

EmPower Approach
(Flow-diagram)

EmPower Approach
(Flow-diagram)

30

MPI+Multithreaded Implementation
(Flow-diagram)

MPI+Multithreaded Implementation
(Flow-diagram)

Memory

Worker

Thread

Polling

Thread

Memory

Worker

Thread

Polling

Thread

Memory

Worker

Thread

Polling

Thread

Node 0 Node 1 Node K-1

MPI_COMM_WORLD

0
Process

ID (rank) 1 K-1

Multi-

threading

Multi-

threading

MPI MPI

31

Motivation behind use of MPI

 MPI is a standardized, vendor-independent and
portable library

 MPI is a de-facto industry standard

 It allows easy integration with C++ and hence, is
suitable for code reuse, smaller development time
and time-to-market.

 Distributed computing leads to high scalability.

Thus, MPI suits the design goal of EmPower of easy
deployment in real-life systems.

32

Platform Specific Optimizations

 Each processor executes with two threads

 Executor thread, which does actual work

 Polling thread, which polls for steal requests from others

 This enables non-blocking implementation.

 For implementation of multithreading, we use
POSIX threads: shared memory reduces
communication costs.

 Mutex locks for protecting critical sections

 Infrequent polling in beginning to reduce overhead.

33

Thief 1 Thief 2

Mutex

Variable

blocked Lock

Access

Task Queue

Of Victim

Mutex Lock Concept Mutex Lock Concept

34

Master-slave Scheduling
 Simulation Time (seconds)

Master-slave Scheduling
 Simulation Time (seconds)

EmPower Approach
 Simulation Time (seconds)

EmPower Approach
 Simulation Time (seconds)

35

Amount of Time Saved
 Using EmPower Approach

Over Master-slave Scheduling

Amount of Time Saved
 Using EmPower Approach

Over Master-slave Scheduling

For 30000 contingencies on 8 processors, savings of almost 2 hours!

36

Weak Scaling Results
Master-slave and EmPower Approach

(Baseline: Master-slave with 8 processors)

Weak Scaling Results
Master-slave and EmPower Approach

(Baseline: Master-slave with 8 processors)

37

Weak Scaling Results
EmPower Approach

(Baseline: EmPower with 8 processors)

Weak Scaling Results
EmPower Approach

(Baseline: EmPower with 8 processors)

38

Conclusion and Ongoing/Future Work

 Use of HPC in contingency analysis necessitates load
balancing approaches

 EmPower outperforms conventional scheduling
techniques and leads to significant time savings,
which translates into energy saving and economic
gains

 Uses efficient combination of MPI and
multithreading

 Recent results on up to 128 processors further
confirms good scalability of EmPower.

39

Q U E S T I O N S A N D C O M M E N T S A R E W E L C O M E !

Thank You!

Extra Slides

41

Multiple-Master, slave scheduling

 A variant of master-slave scheduling

 Uses multiple masters to avoid contention on the
master

 Disadvantages:

 Many nodes, which are used as master do not do any useful
work.

 If one master exhausts tasks, have to request from another
master=> higher latency.

42

