
SIDDHARTHA KUMAR KHAITAN

JAMES D. MCCALLEY

S K H A I T A N @ I A S T A T E . E D U

E L E C T R I C A L A N D C O M P U T E R E N G I N E E R I N G

I O W A S T A T E U N I V E R S I T Y , A M E S , I A .

EmPower: An Efficient Load Balancing
Approach For Massive Dynamic

Contingency Analysis in Power Systems

This work was supported in part by DOE OE subcontract B601014.

mailto:skhaitan@iastate.edu

2

EmPower: Efficient load balancing
approach for massive dynamic
contingency analysis in Power

systems.

Presentation Plan

 Motivation

 Static Scheduling

 Master-Slave Scheduling

 Work-stealing Based Scheduling

 Implementations and Results

3

Motivation

 Modern power systems: large and complex

 Requirement of N-k contingency analysis

 Contingency analysis is computationally intensive

 Sequential processing insufficient. Must use parallel
platforms for higher throughput.

 Parallelization brings need for effective scheduling
for load balancing: to avoid resource wastage.

4

Example Contingency Time Distribution

5

Static Scheduling

Main Idea:

• Statically assign tasks to available processors.

• The finish time of the schedule is the time when the last job

finishes.

6

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Static Allocation: Initially tasks are equally distributed.

7

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

As time progresses…

8

P1 P2 P3 Pn

T T

T

T

T

T

T

T

T

T

As time progresses…

free, waiting…

9

P1 P2 P3 Pn

T

T

T

T

T

T

T

P1 and P3, but they have to wait for last-finishing processor…

free, waiting… free, waiting…

10

Static Scheduling Algorithm

11

Static Scheduling: Summary

Advantages:

1. No overhead of online
scheduling

2. No processor needs to
act as scheduler

3. Good if task lengths are
equal.

Disadvantages:

1. Very poor load
balancing

2. Free processors have to
wait, when done

3. Processors with extra
tasks get high load.

12

Master-slave Scheduling

Main Idea:

• One processor is used as the master and others as slave.

• Master assigns tasks to each of the slaves.

• When a slave finishes a task, it requests new task from the

master.

• The finish time of the schedule is the time when the last job
finishes.

13

P1

T

T

T

T

T

T

T

T

T

T

T

T

Master P2 Pn-1

Before beginning master has all the tasks.

14

P1

T

T

T

T

T

T

T

T

T

T T T

Master P2 Pn-1

Initially master assigns task to each slave.

Running
tasks

15

P1

T

T

T

T

T

T

T

T

T

T T

Master P2 Pn-1

P2 is free. It requests from master….

Running
tasks

16

P1

T

T

T

T

T

T

T

T

T T T

Master P2 Pn-1

Master allocates a task to P2….

Running
tasks

17

P1

T

T

T

T

T

T

T

T

T

Master P2 Pn-1

Both P1 and Pn-1 are free and demand tasks=> contention. Locking required

Running
tasks

18

Master-Slave Scheduling Algorithm
19

Master-slave scheduling: Summary

Advantages:

1. Overcomes limitation of
static-scheduling by
providing better load
balancing

2. No mutual
communication
between slaves => low-
overhead

Disadvantages:

1. Master node does no
useful work => waste.

2. If multiple slaves
request from master
simultaneously =>
contention.

20

Work-stealing Based
Scheduling

Main Idea:

• All tasks hold task-queues and start their work.

• A free node (“thief”) steals tasks from another node (“victim”),

which has excess tasks.

• Uses double-ended queue: stealing request can be addressed
without waiting for finishing of current task.

• Efficient in space, time and communication overhead [BL99].

 [BL99] R. Blumofe and C. Leiserson, “Scheduling multithreaded computations by work stealing”, JACM 1999.

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Work-stealing: Initially tasks are equally distributed.

22

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

As time progresses…

23

P1 P2 P3 Pn

T

T

T

T

T

T

T

T

T

T

T

T

T

P3 is free, steals tasks from P2.
NOTE: P2 is not interrupted!

24

P1 P2 P3 Pn

T

T

T

T

T

T

T

T T

T

T

T

T

P3 receives the task..

25

P1 P2 P3 Pn

T

T

T

T

T T

T

T

T

Similarly P1 steals task…..
To avoid multiple processors stealing, lock is required.

26

Work-Stealing Scheduling Algorithm

Work-stealing

Advantages:

1. Fine load-balancing

2. No wastage of nodes

3. Widely used.

4. No contention at a
single master.

Disadvantages:

1. Each processor can
communicate with any
other processor: special
topology reqd.

2. In worst-case,
communication
overhead can become
high.

3. Termination-detection
more challenging.

28

Implementation

Platform Techniques Implemented

MPI+Multithreaded Master-slave and Work-stealing

29

 Industry Standard Data I/O
 Bus/Branch and Node/Breaker
 Sparse Data Structure
 Steady State and Time Domain
 Analysis

Efficient Numerical Algorithms:
 Integrator
 Non-linear Solver
 Linear Solver

Single Contingency
 Analysis (C++)

Single Contingency
 Analysis (C++)

Massive Contingency
 Analysis (MPI in C++)
Massive Contingency

 Analysis (MPI in C++)
Load-Balancing

(MPI & p-threads in C++)
Load-Balancing

(MPI & p-threads in C++)

 Scaling to large
 number of
 contingencies
 Parallelization

Implementation Platform
 OpenMP
 GPU
 MPI

Techniques
 Static
 Master-Slave
 Work-stealing

Optimizations
 Multi-threading
 Mutex-Locks

EmPower Approach
(Flow-diagram)

EmPower Approach
(Flow-diagram)

30

MPI+Multithreaded Implementation
(Flow-diagram)

MPI+Multithreaded Implementation
(Flow-diagram)

Memory

Worker

Thread

Polling

Thread

Memory

Worker

Thread

Polling

Thread

Memory

Worker

Thread

Polling

Thread

Node 0 Node 1 Node K-1

MPI_COMM_WORLD

0
Process

ID (rank) 1 K-1

Multi-

threading

Multi-

threading

MPI MPI

31

Motivation behind use of MPI

 MPI is a standardized, vendor-independent and
portable library

 MPI is a de-facto industry standard

 It allows easy integration with C++ and hence, is
suitable for code reuse, smaller development time
and time-to-market.

 Distributed computing leads to high scalability.

Thus, MPI suits the design goal of EmPower of easy
deployment in real-life systems.

32

Platform Specific Optimizations

 Each processor executes with two threads

 Executor thread, which does actual work

 Polling thread, which polls for steal requests from others

 This enables non-blocking implementation.

 For implementation of multithreading, we use
POSIX threads: shared memory reduces
communication costs.

 Mutex locks for protecting critical sections

 Infrequent polling in beginning to reduce overhead.

33

Thief 1 Thief 2

Mutex

Variable

blocked Lock

Access

Task Queue

Of Victim

Mutex Lock Concept Mutex Lock Concept

34

Master-slave Scheduling
 Simulation Time (seconds)

Master-slave Scheduling
 Simulation Time (seconds)

EmPower Approach
 Simulation Time (seconds)

EmPower Approach
 Simulation Time (seconds)

35

Amount of Time Saved
 Using EmPower Approach

Over Master-slave Scheduling

Amount of Time Saved
 Using EmPower Approach

Over Master-slave Scheduling

For 30000 contingencies on 8 processors, savings of almost 2 hours!

36

Weak Scaling Results
Master-slave and EmPower Approach

(Baseline: Master-slave with 8 processors)

Weak Scaling Results
Master-slave and EmPower Approach

(Baseline: Master-slave with 8 processors)

37

Weak Scaling Results
EmPower Approach

(Baseline: EmPower with 8 processors)

Weak Scaling Results
EmPower Approach

(Baseline: EmPower with 8 processors)

38

Conclusion and Ongoing/Future Work

 Use of HPC in contingency analysis necessitates load
balancing approaches

 EmPower outperforms conventional scheduling
techniques and leads to significant time savings,
which translates into energy saving and economic
gains

 Uses efficient combination of MPI and
multithreading

 Recent results on up to 128 processors further
confirms good scalability of EmPower.

39

Q U E S T I O N S A N D C O M M E N T S A R E W E L C O M E !

Thank You!

Extra Slides

41

Multiple-Master, slave scheduling

 A variant of master-slave scheduling

 Uses multiple masters to avoid contention on the
master

 Disadvantages:

 Many nodes, which are used as master do not do any useful
work.

 If one master exhausts tasks, have to request from another
master=> higher latency.

42

