
1

Evaluation of Counter-Based
Dynamic Load Balancing Schemes
for Massive Contingency Analysis on
Over 10,000 Cores

 Yousu Chen

Zhenyu (Henry) Huang
Mark Rice

Pacific Northwest National Laboratory

Nov. 11th, 2012

HiPCNA-­‐PG	
 2012	
 workshop,	
 Salt	
 Lake	
 City,	
 UT,	
 USA	

Outline

14000-­‐bus	
 WECC	
 Full	
 SE	

!   The need of parallel contingency analysis
!   Multiple-counter dynamic load balancing scheme framework

!   Key: handle task unevenness
!   Performance evaluation for massive contingency analysis on over

10,000 cores
!   Two-counter vs. single-counter scheme for 1 million WECC N-2 CA
!   Comparison against another load scheme

!   Discussion on disk I/O and other potential techniques for performance
improvement

2

The Need of Parallel Contingency
Analysis

14000-­‐bus	
 WECC	
 Full	
 SE	

!   Role of Contingency Analysis
!   A security function to assess the capability of a power system to sustain various

combination of element failures
!   Power grid operation relies on contingency analysis to gain situational awareness

and design remedial actions

!   Evolves from “N-1” to “N-x”
!   To improve situational awareness
!   To better understand cascading failures

!   Today’s contingency analysis
!   Typical solution time: 1-2 minutes with a pre-defined contingency list (a few

hundred to thousand cases)
!   Run with a pre-defined contingency list: not able to solve full contingency analysis

within the operation cycle

!   Require High Performance Contingency Analysis with today’s trend of
smart grid technologies

3

Static Load Balancing vs. Dynamic
Load Balancing

4

Proc	
 0	

Proc	
 1	
 Proc	
 2	
 Proc	
 N	

Proc	
 0	

Proc	
 1	
 Proc	
 2	
 Proc	
 N	

Proc 0:
(1) Distribute base case Y0 matrix
(2) Perform static load balancing (pre-allocate)
(3) Distribute case information to other processors
(4) Perform contingency analysis

Other Proc’s:
(1) Update Y matrix based on case information: Y = Y0 + ΔY
(2) Perform contingency analysis

Proc	
 1	
 Proc	
 2	
 Proc	
 N	
 Proc	
 2	
 …	
 Proc	
 N	
 	

Other Proc’s:
(1)  Request cases via counter update
(2)  Update Y matrix based on case information: Y = Y0 + ΔY
(3) Perform contingency analysis

Proc	
 1	

Proc 0:
(1) Distribute base case Y0 matrix
(2) Distribute case information to other processors
(3) Request cases via counter update
(4) Perform contingency analysis

Proc	
 0	

(task	
 counter)	

…	

!   Static load balancing
!   Pre-allocate equal number of

cases to each processor
!   Overall computational efficiency is

determined by the longest
execution time of individual
processors

!   Computational power is not fully
utilized as many processors are
idle while waiting for the last one
to finish

!   Dynamic load balancing
!   Based on a shared task counter

updated by atomic fetch-and-add
operations.

!   Allocate tasks to processors
based on the availability of a
processor

!   Computation time on each
processor is optimally equalized

!   Overhead: counter update time

Static Load Balancing V.S. Dynamic Load
Balancing

14,000-bus WECC Full N-1 Analysis

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
Number of processors

S
pe

ed
up

Static load balancing
Dynamic load balancing

800

850

900

950

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Processor #

T
im

e
 (

s
e
c
o

n
d

s
)

S tatic	
 Load	
 B alancing

Dynamic	
 Load	
 B alancing

Average: 834 sec	

Fu
ll	

N
-­‐1
	
 W

EC
C	

! Dynamic load balancing scheme has better performance
than static load balancing, even with the overhead of
counter update – better asset utilization

5

Two-counter Dynamic Load Balancing
Scheme

Proc	
 0	

Proc	
 1	
 Proc	
 2	
 Proc	
 N	

Proc	
 0	

Proc	
 1	
 Proc	
 2	
 …	
 Proc	
 N	

Proc	
 0	

Proc	
 1	
 Proc	
 2	
 Proc	
 N	

Proc	
 0	

Proc	
 1	
 Proc	
 2	
 …	
 Proc	
 N	

Group	
 1	
 Group	
 2	
 Task	
 Stealing	

CongesJon	

! The scalability of dynamic load balancing schemes is
likely to be limited by counter-congestion

! Solution to counter-congestion: multi-counter with task
stealing

6

The Performance of the Counter-based
Dynamic Load Balancing Scheme

#	
 of	
 cores
Single-­‐

counter	
 Time	

(s)

Two-­‐counter	

Time	
 (s)

Single-­‐counter	

Speedup

Two-­‐counter	

Speedup

512 1023.4 1021.0	
 511	
 513
1024 517.4 512.7 1011 1021
2048 250.1 250.1 2093 2092
4096 163.4 132.0 3202 3964
10240 74.3 66.9 7040 7877

! One million N-2 contingencies for a WECC model
! Two-counter scheme has better performance when the

number of cores is large
! First time the CA can be scaled up to 10,000+ cores

7

The Performance of the Counter-based
Dynamic Load Balancing Scheme

! The main reason: task unevenness
! The framework is generic, can be applied to other

applications, such as path rating study

	

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 2000 4000 6000 8000 10000

Sp
ee
du

p

The	
 number	
 of	
 cores

single-­‐counter	
 scheme two-­‐counter	
 scheme

8

The Unevenness of Contingency Cases

!   The histogram of execution time
for 1 million contingency cases

	

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

9
x 105

Execution time for each contingency case (second)

Fr
eq

ue
nc

y

Histogram of execution time for 1 million CA cases

!   The number of cases assigned
to each core

	

0 50 100 150 200 250 300 350 400 450 500

1800

1850

1900

1950

2000

2050

Processor index

N
um

be
r o

f C
A

 c
as

es

The number of CA cases performed on each processor

9

More Details On the Total Time

#	
 of	
 cores total_Gme Comp. I/O Counter

512 523293.9 520903.6 2348.6 42.8

1024 527642.2 525535.4 2579.5 43.2

2048 509177.4 505517.3 3617.3 42.9

4096 662433.1 656904.8 5466.9 61.7

10240 700843.4 665460.3 35269.3 113.9

#	
 of	
 cores total_Gme Comp. I/O Counter

512 522075.3 519636.1 2398.6 41.4

1024 523033.0 521187.5 2316.0 41.0

2048 508194.4 504682.8 3470.1 41.2

4096 530983.4 524833.4 6095.9 54.0

10240 677272.4 647906.5 29261.8 104.1

! Total time =
Computational + I/O +
counter update

! Two-counter scheme
has shorter counter
updating time, which
indicates that it does
help to reduce counter
congestion

! Two-counter scheme
has better performance
for running a large
number of cases with
many cores

! Disk I/O time becomes
large when the number
of cores increases

Si
ng
le
	
 c
ou

nt
er
	

Tw
o	

	
 c
ou

nt
er
	

10

Speedup Comparison

14000-­‐bus	
 WECC	
 Full	
 SE	

!   Simple comparison against the load balancing scheme in (*)
!   Assumption for (*): speed-up is perfect for the case of 512 cores for the118-

bus, and 1024 cores for the 300-bus system
!   The two-counter scheme has better speedup than the scheme in (*)

(*) A. Mittal, J. Hazra, N. Jain, Nikhil, V. Goyal, D. Seetharam, and Y. Sabharwal, “Real time contingency
analysis for power grids,” Proceedings of the 17th international conference on Parallel processing -
Volume Part II, 2011.

#	
 of	
 	

cores

IEEE	
 118-­‐case,	
 level	

7

IEEE	
 300-­‐case,	
 level	

7

Jme speedup Jme speedup

512 290.1
512	

(assumed) N/A N/A

1024 147.7 1005 910.2
1024	

(assumed)
2048 73.9 2011 466.1 2000
4096 47.5 3127 254.4 3663
8192 26.4 5630 143.1 6513

#	
 of	

cores

Two-­‐
counter	

Time	
 (s)

Two-­‐
counter	

Speedup

512 1021.0	
 513

1024 512.7 1021

2048 250.1 2092

4096 132.0 3964

10240 66.9 7877

11

Performance Improvement Discussion

14000-­‐bus	
 WECC	
 Full	
 SE	

!   Key overheads: disk I/O operations and communication among a
large amount of cores

!   Disk I/O improvement:
!   Original Implementation:

!   Each core will perform an open and close function for each contingency case
!   All output files are saved in the same directory where the program is launched
!   Fully used the number of cores per node

!   New implementation
!   Create a subdirectory for each core to let disk I/O perform in individual

directory
!   Archive multiple contingency outputs into one file
!   Save output files at a different location than where the program is launched
!   Adjust the number of used cores per node to increase the bandwidth in each

socket
!   More than 100 times improvement with new implementation

12

Other Potential Techniques for
Improvement

14000-­‐bus	
 WECC	
 Full	
 SE	

!   Design a hierarchical dynamic load balancing scheme
!   Improve communication mechanism

!   Implement a k-counter dynamic load balancing scheme for large
amount of cores
!   Reduce counter updating time

!   Integrate with a dedicated task scheduling library for load balancing
and fault tolerance
!   Avoid the whole job failure caused by individual node failures

13

Conclusion

!   This is the first time that contingency analysis can be scaled to more
than 10,000 cores, with excellent speedup performance (7877 with
10,240 cores)

!   The study results prove that the multi-counter dynamic load balancing
scheme is more suitable for performing a large set of contingency
cases with a large number of processors

!   This scheme can be applied to other applications involving uneven
tasks

!   Some performance improvement techniques have been discussed,
including disk I/O and communication overhead

14

Questions?

15

