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Project Overview PacificiNCUE=S
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» Project under Pacific Northwest National Laboratory’s “Future Power
Grid Initiative”

» Goal: Study methods for achieving real-time computation using High-
Performance Computing

» Using power-grid applications as a vehicle for this research

» Grid is evolving. Problem: data size!

B PMUs, Smart meters: projected to generate massive amounts of
streaming sensor data (O(TB/day)).

B Data needs to be analyzed in real-time

» Target application: Dynamic State Estimation
B Roughly:
® Power grid states include rotor angle and speed at each generator
@ State not directly observable- measured quantities are functions of states
® Therefore: we estimate state using a recursive dynamic state estimation
® Matrix Multiplication plays a large part (thus current focus)
® Real time constraint: Results need to keep up with PMU data rate (~30 ms)
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Dynamic State Estimation PacificrolEas
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» Goal: to dynamically estimate the states of the power grid system by
integrating the process model and data assimilating the measured
guantities (i.e., PMU data) as they are available (i.e., in real-time)

B Two mathematical models are needed: the physical/process and
measurement models

» Caveat: physical and measurement models are not known exactly
Process model: X = f (X)) +W ., W ~N(@OQ.)
> white noise added
Measurement model: Yo =h.(X)+Vv,, Vi~N(@OR,)

» To capture the effects of the noise, a statistical approach is taken, the
Ensemble Kalman Filter

B Core computational component of this approach are the matrix-matrix
products
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Ensemble Kalman Filter (Additive Noise)
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Real-Time HPC - Challenges Pacific NS
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» Usual real-time challenges
B Process Scheduling
B Memory Management
B Resource Allocation
-
» HPC-specific challenges
B Internode communication
B Timing interactions between concurrent processes
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Real-Time HPC - Challenges Pacific NoTtliu=t
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» Usual real-time challenges

-
- RTOS on each node
-
-
» HPC-specific challenges Infiniband drivers recompiled
- into RT space

Verification via formal model®

* Peter Hui, Satish Chikkagoudar, “A Formal Model for Real-Time Parallel Computation”. In Proceedings of First
International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS’12), Kyoto, Japan. 2012.
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Infrastructure Pacific Northwest
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» Start with a standard cluster

» Modifications
B Compute nodes run RTOS (i.e. Xenomai)
B Need real time data transport over Infiniband (IB)

Nodes communicate using
RT channeis over Infiniband

Compute nodes: Each compute node runs an instance of an RTOS (Xenomai)
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» Dynamic State Estimation application (Lee)

» Focus on one kernel: extracted Matrix Multiplication from application
B Simple implementation
B Compiled using Xenomai real-time framework
B Control flow, concurrent process interaction modeled
B Timing measurements taken, fit into model
B Analysis gives provable upper bound on runtime

B Result: 128x128 matrix multiplication in <9 ms
® ** NOTE: size, time is not a surprising result

@ Main results of interest:
¢ Provable upper bound
¢ Analysis, development process, thought process behind RT cluster computing
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Kernel Focus: Matrix Multiplication

» Algorithm

B

C,

Cs

B Example: Four processor cluster
® P1l: Computes C1 =Al xB1
® P2: Computes C2 = Al x B2
® P3: Computes C3 = A2 x Bl
® P4: Computes C4 = A2 x B2

December 17, 2012

Cs

C;

7

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



Matrix Multiplication — Timing Model (I) PacificrolEas
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» At a high level: Derive annotated control flow graph from algorithm
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Matrix Multiplication — Timing Model (ll) PacificrolEas
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» Annotated CFG allows us to
reason about timings and s (P SAAAD N Tt

&
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» Integrate this kernel into main Dynamic State Estimation application

» Perform similar analysis on main application

» How to automate this control flow analysis?
B Possible approach: Compiler driven?
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QUESTIONS?
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