GridPACK™ Framework for
Developing Power Grid Applications
for HPC Platforms

Bruce Palmer, Bill Perkins, Kevin Glass,
Yousu Chen, Shuangshuang Jin, Ruisheng
Diao, Mark Rice, David Callahan, Steve
Elbert, Henry Huang

Objective

Develop a framework to support the rapid development
of power grid software applications on HPC platforms

Extend the penetration of HPC in power grid modeling

Provide high level abstractions for often used motifs in
power grid applications

Reduce the amount of explicit communication that
must be handled by developers

Allow power grid application developers to focus on
physics and algorithms and not on parallel computing

Approach

Develop software modules that encapsulate
commonly used functionality in HPC power grid

applications

* Setup and distribution of power grid networks

* |nput/Output

* Mapping from grid to distributed matrices

* Parallel solvers

* |ncorporate advanced parallel libraries whenever

NOSSI

nle

— PETSc, ParMETIS

GridPACK™ Software Stack

Network Components

* Neighbor Lists
* Matrix Elements

Application Factory

Applications

Solver

Import Module
* PTI Formats
* Dictionary

Math Module
* PETSc

Matrix and Vector
Module
* PETSc

Configure Module
« XML

GridPACK™ Framework

Export Module
e Serial 10
* PTI Formats

Network Module Utilities

* Ghost * Errors
Exchanges * lLogging

* Partitioning * Profiling

Matrices and
Vectors

Power Grid Core
Network and Data
Fields Objects

Application Flow Diagram

Configuration
File

Output File

Configure
Module

Export
Network

Network topology,
network components

Network topology,
simple fields

Network Solver
Object Module

Import Network

Network et Partition Factory

Topology File

Network Network Math
Module Component Module

Modules

 Network: Manages the topology, neighbor lists,
parallel distribution and indexing. Acts as a
container for bus and branch components

* Bus and Branch components: define the behavior
and properties of buses and branches in network.
These components also define the matrices that
can be generated as part of the simulation

e Factory: Manages interactions between network
and the components

Instantiate a Network

#include “gridpack/network/BaseNetwork.hpp”
#include “gridpack/applications/myapp/mycomponents.hpp”

typedef gridpack: :network: :BaseNetwork
<gridpack: :myapp: :MyBus,
gridpack: :myapp: :MyBranch> MyNetwork;

boost: :shared ptr<MyNetwork> network (new MyNetwork) ;

// Create a network object that has the application-specific
// bus and branch models associated with it. The network will
// also have DataCollection objects on each bus and branch.
// At this point, the network is just a container and has no
// topology or datak

Create Network from External File

#include “gridpack/parser/ParserPTI.hpp”

gridpack: :parser: :PTI23 parser<MyNetwork> parser (network) ;
parser.getCase(“location of PTI file”);
Parser.createNetwork() ;

// The network topology now exists and the data

// collection objects on each bus and branch are filled
// with parameters from the PTI file. The network is

// NOT, however, distributed in an optimal way at this
// point. Also, no ghost buses or ghost branches have
// been added to the network yet, so most calculations
// not possible

Network Topology

® Bus

Branch

<

Network Data

[] Data Collection
[] Objects on Buses

- Data Collection
Objects on Branches

Network Components

/\ Uninitialized Bus
Component

A Uninitialized Branch
Component

A

Partition Network

// Possibly include some partitioning options before
// invoking the partition function

network->partition() ;

// Network has been properly distributed among

// processors, ghost buses and ghost branches have been
// added to the network, and global indices have been
// set. Local neighbor lists and indices for the ends
// branches have also been set. Network is almost ready
// for calculations

Partitioning the Network

Process O Process 1

Process O Partition

Process O

-

o

Ghost Buses
and Branches

|
|
|
|
|
|
|
|
|
|
|
-4 -0
|
|
|
|
|
|
|

Process 1 Partition

Q.

‘5

I
I
I
I
I
I
I
':' ~~ Process 1
Ghost Buses I
and Branches :
I
:
I
I
I
I
I
I

O—

Initialize Components

#include “gridpack/applications/myapp/MyFactory.hpp

gridpack: :myapp: :MyFactory factory (network) ;
factory.load() ;

//
//
//
//
//

The “load” operation takes all the data from the
data collection objects and moves them into the
corresponding bus and branch components using the
load functions that have been defined in the
individual bus and branch classes

factory.setComponents() ;

//
//
//
//
//

This function sets up the neighbor lists in individual
bus and branch components so that they are pointing to
the correct neighbors. This should be set AFTER
partitioning the network. It also guarantees that each
component knows its global indices

Initialize Components

\ load method

Use data in Data
Collections to initialize
bus and branch
components via the

Initialize Components (cont.)

factory.setExchange () ;

//
//
//
//
//
//

This function sets up internal buffers so that data
exchanges to fill up ghost branches and ghost
buffers will work. To exchange data, users need to
put the data in the component’s exchange buffer and
then invoke a bus or branch ghost exchange in the
network

Base Network Class

// Return number of buses and branches on this process
// (including ghost buses and branches)

int numBuses (void) ;

int numBranches (void) ;

// Get local index of reference bus (return -1 if
// reference bus is not on this process)
int getReferenceBus (void) const;

// Return true if bus or branch is local to the process,
// return false for ghost buses and branches

bool getActiveBus (int idx);

bool getActiveBranch (int idx) ;

// Return pointer to bus or branch object corresponding
// to local index idx

boost: :shared ptr<MyBus> getBus (int idx);

boost: :shared ptr<MyBranch> getBranch(int idx) ;

Base Network Class

// Return pointer to DataCollection objects associated
// with bus or branch at local index idx
boost: :shared ptr<gridpack: :component::DataCollection>

getBusData (int idx) ;
boost: :shared ptr<gridpack: :component: :DataCollection>
getBranchData (int idx);

// Remove all ghost buses and branches from the network
void clean (void) ;

// Set up data structures for exchanges to ghosts buses
// and branches

void initBusUpdate (void) ;

void initBranchUpdate (void) ;

// Send data to ghost buses and branches
void updateBuses (void) ;
void updateBranches (void)

Factories

* Factories are designed to set up the system so
that it can be used in calculations. They
guarantee the all bus and branch objects are in
the correct state for generating the correct

matrices and vectors needed for solving the
problem

* A primary motif in factory methods is that they
loop over all bus and branch objects and invoke
methods on them that set a particular state

Base Factory Class

// Set up lists of pointers in each component to
// neighbors of all buses and branches in the

// network

virtual void setComponents (void) ;

// Invoke the load method on all bus and branch
// components in the network
virtual void load(void) ;

// Set up exchange buffers for all bus and branch
// components in the network
virtual void setExchange (void) ;

// Invoke the setMode method on all bus and branch
// components in the network
virtual void setMode (int mode) ;

Example of a Factory Method

Generic method that invokes the "load" method

on all branches and buses to move data from

the DataCollection objects on the network into the
corresponding buses and branches

*/

void gridpack: :factory: :BaseFactory: :load(void)

{

int numBus = p network->numBuses () ;

int numBranch = p network->numBranches() ;

int 1i;

// Invoke load method on all bus objects

for (i=0; i<numBus; i++) {
p_network->getBus (i) ->load (p_network->getBusData(i));

}

// Invoke load method on all branch objects

for (i=0; i<numBranch; i++) {
p_network->getBranch (i) ->load (p_network->getBranchData(i)) ;

}

Components

* All components are derived from the
MatVeclnterface class and the
BaseComponent class

* Bus components are derived from the
BaseBusComponent class

* Branch components are derived from the
BaseBranchComponent class

Component Class Hierarchy

MatVeclinterface

|

BaseComponent

BaseBusComponent BaseBranchComponent

T T

AppBusComponent AppBranchComponent

The MatVeclnterface

* Designed to allow the GridPACK™ framework to
generate matrices and vectors from individual
bus and branch components

* Buses and branches are responsible for
describing their individual contribution to
matrices and vectors

* Buses and branches are NOT responsible for
determining location in matrix or vector and are
NOT responsible for distributing matrices or
vectors

Diagonal MatVeclnterface

// Return the size of matrix block on the diagonal and the
// global index of this component. Usually implemented on
// bus components. This function returns false if the

// component does not contribute anything to the matrix

virtual bool matrixDiagSize (int *isize,
int *jsize) const

// Return the global location of diagonal matrix block plus
// the values of the block in row-major order. Return false

// if component does not contribute to matrix

virtual bool matrixDiagValues (ComplexType *values)

Off-diagonal MatVeclnterface

// Return the size and global indices of an off-diagonal
// matrix block contributed by the component. This

// function returns false if no values are contributed by
// component.

virtual bool matrixForwardSize (int *isize,

int *jsize) const
virtual bool matrixReverseSize (int *isize,

int *jsize) const

// Return the global indices and values of off-diagonal
// matrix block. Values are in row-major order.

virtual bool matrixForwardValues (ComplexType *values)
virtual bool matrixReverseValues (ComplexType *values)

Vector MatVeclnterface

// Return the global index and block size of component
// contribution to a vector. Return false if a component
// does not contribute to vector

virtual bool vectorSize(int *isize) const

// Return the global index and values of the vector block
// contributed by component

virtual bool vectorValues (ComplexType *values)

BaseComponent

* This class provides a few methods that are
needed by all network components (bus or
oranch)

* Provides methods for moving data from
DataCollection objects to components and sets
up buffers used for ghost bus and ghost branch
exchanges

* Provides a mechanism for changing component
behavior so that different matrices can be
extracted from components during different
phases of the calculation

BaseComponent

// Load data from DataCollection object into component
virtual void load(const shared ptr<DataCollection> &data)

// Return the size of the buffer needed for data exchanges
// Note that all bus components must return the same value
// for this function and all branch components must return
// the same value

virtual int getXCBufSize (void)

// Write out a single string describing current state of

// the component. The character string “signal” can be used
// to control the behavior of the component. Return false
// if no string is being returned. This functionality is

// used in the seriallIO module

virtual bool serialWrite (char *string, char *signal)

BaseBusComponent

* Provides methods that are needed by all bus
component implementations

e Sets up lists of branches that are attached to
the bus and buses that are attached via a
single branch

* Keeps track of the reference bus

BaseBusComponent

// Get pointers to branches that are connected to bus

void getNeighborBranches (vector<shared ptr
<BaseComponent> > &nghbrs) const

// Get pointers to buses that are connected to bus via

// a single branch
void getNeighborBuses (vector<shared ptr
<BaseComponent> > &nghbrs) const

// If bus is reference bus, set status to true
void setReferenceBus (bool status)

// Return true if this bus is reference bus
bool getReferenceBus (void) const

BaseBranchComponent

Provides methods that are needed by all
oranch component implementations

Keeps track of the buses at each end of the
oranch and makes these available to the
application

BaseBranchComponent

// Get pointers to buses at either end of the branch.
// Bus 1 refers to the “from” bus and bus 2 refers to
// the “to” bus

shared ptr<BaseComponent> getBusl (void) const
shared ptr<BaseComponent> getBus2(void) const

Mapper

* Provide a flexible framework for constructing
matrices and vectors representing power grid
equations

* Hide the index transformations and partitioning
required to create distributed matrices and
vectors from application developers

* Developers can focus on the contributions to
matrices and vectors coming from individual
network elements

Matrix Contributions from
Components

No matrix
contribution

\

No matrix
contribution

10/

N

No matrix
contribution

%

Distribute Component Contributions
and Eliminate Gaps

Mapper Interface

// Instantiate a new mapper that creates a matrix from
// bus and branch components on the network
void FullMatrixMap (shared ptr<MyNetwork> network) ;

// Create a matrix from the network
shared ptr<Matrix> mapToMatrix(void) ;

// Reset matrix based on current network wvalues
void mapToMatrix (shared ptr<Matrix> &M) ;

// Other classes include BranchMatrixMap and
// BusVectorMap

Math Library

// Initialize math library. Call any initialization
// routines that are necessary and read in any

// configuration files. Currently, PETSc options are
// listed in a gridpack.petscrc file. This is were
// preconditioners and other PETSc configuration

// parameters are specified.

extern void Initialize(void) ;

// Is math library initialized?
extern bool Initialized(void) ;

// Shut down math library
extern void finalize();

Vector Class

// Specify parallel configuration and local contribution
// to vector in constructor

Vector (const parallel: :Communicator &comm,
const int &local length);

// Accessors for vector properties

int size(void) const;

int local _size(void) const;

void local index range(int &lo, int &hi) const;

Vector Class

// Set vector elements
void set element(const int &i, const ComplexType &x);
void set elements(const int &n, const int *i,

const ComplexType *xXx);

// Access matrix elements

void get element(const int &i, ComplexType &x) const;

void get elements(const int &n, const int *i,
ComplexType *x) const;

// Indicate vector is ready to use
void ready (void) ;

Basic Vector Operations

// Basic operations that can be performed on vectors

void zero (void) ;

void fill (const ComplexType &vV) ;

ComplexType norml (void) const;

ComplexType norm2 (void) const;

void scale(const ComplexType &x) ;

void add(const Vector &x, const ComplexType &scale = 1.0);
void equate (const Vector &x);

void reciprocal (void) ;

Matrix Class

// Specify dimensions and storage format of matrix in
// constructor. Also the parallel configuration

Matrix (const parallel: :Communicator &dist,
const int &local rows,
const int &cols,
const StorageType &storage type=Sparse)

// Accessors for matrix properties
int rows(void) const;

int local rows(void) const;
int cols(void) const;

Matrix Class

// Set matrix elements
void set element(const int &i, const int &j,
const ComplexType &x);

void set elements(const int &n, const int *i,
const int *j, const ComplexType *x);

// Access matrix elements
void get element(const int &i, const int &j,
ComplexType &x) const;

Void get elements(const int &n, const int *ji,
const int *j, ComplexType *x) const;

// Indicate matrix is ready
void ready (void) ;

Basic Matrix Operations

// Basic operations that can be performed on matrices

void
void
void
void
void
void

equate (const Matrix &A);

scale (const ComplexType &x) ;
multiply diagonal (const Vector &x);
add (const Matrix &A);

identity (void) ;

zero (void) ;

// Matrix-Vector operations

extern
extern
extern
extern
extern
extern

Matrix
Matrix
Vector
Vector
Matrix
Vector

*add (const &A, const &B);

*transpose (const Matrix &A) ;

*column (const Matrix &A, const int &cidx);
*diagonal (const Matrix &A) ;

*multiply (const Matrix &A, const Matrix &B) ;
*multiply (const Matrix &A, const Vector &x);

Linear Solver

// Solve equation using and instance of a LinearSolver
LinearSolver (const Matrix &A);
void solve (const Vector &b, Vector &x) const;

Serial 10

* Works in conjunction with the writeSerial
operation in the BaseComponent class

* Designed to send output to standard out of

the form

11 0.942 -16.250 - - - -

12 0.943 -16.176 - - 16.70 1.70
13 0.926 -15.878 - - 16.10 1.60
21 0.964 -12.162 - - 196.20 19.60
23 0.964 -12.162 - - 0.10 0.10
31 0.967 -10.454 - - 79.20 7.90
32 0.967 -10.454 - - 79.20 7.90
41 0.978 -11.654 - - 106.70 10.70
43 0.978 -11.688 - - 5.60 0.60
51 0.937 -16.934 - - 63.70 6.40
52 0.940 -16.426 - - - -

61 0.909 -21.810 - - 23.20 2.30
62 0.905 -23.846 - - 23.40 2.30
75 0.923 -18.114 - - 21.30 2.10

Serial 10 Classes

// Write serial IO from buses. “len” is the maximum size
// string that is written. The string “signal” is passed
// to the writeSerial method in the BaseComponent class
SerialBusIO(int len,

boost: :shared ptr<MyNetwork> network)
void write (char *signal)

// Write Serial IO from branches
SerialBranchIO(int len,

boost: :shared ptr<MyNetwork> network)
void write (char *signal)

Using Serial IO

Use code fragment

if (me == 0) {
printf (” Bus Voltage Generation Load\n”) ;
printf (” # Mag (pu) Ang (deqg) P (MW) QO (MVAr) P (MW) QO (MVAr)\n”);
printf(” --—--—=—-—————- - \n") ;

}
SerialBusIO busIO (256, network);
busIO.write (“standard”);

to produce
Bus Voltage Generation Load
Mag (pu) Ang (deq) P (MW) Q (MVAr) P (MW) Q (MVAr)
11 0.942 -16.250 - - - -
12 0.943 -16.176 - - 16.70 1.70)
13 0.926 ~15.878 - - 16.10 1.60 Theselines are produced
21 0.964 ~12.162 - - 196.20 19.60 from the writeSerial
23 0.964 -12.162 - - 0.10 0.10 method in
32 0.967 -10.454 - - 79.20 7.90
41 0.978 -11.654 - - 106.70 10.70

