
Framework for Network Co-Simulation
(FNCS) Tutorial
at the 3rd Workshop on
Next-Generation Analytics for the Future Power Grid

JASON FULLER, JEFF DAILY
LAURENTIU MARINOVICI, ANDREW FISHER, KHUSHBU AGARWAL
 Pacific Northwest National Laboratory
July 16, 2014

PNNL-SA-XXXXX

A good scientist is a person with original
ideas.

A good engineer is a person who makes a
design that works with as few original ideas as
possible.

~~Freeman Dyson

What is the need?

!   Smart grid brings information and communication technologies
together with power systems
!   Sensors and equipment gather information
!   Information is processed locally or centrally
!   Decisions are made based on this information

!   But before deploying new technologies,
 it is important to understand:
!   What is the performance

of a given technology?
!   How will new technologies interact

with existing technologies?
!   Will assets at the distribution

level negatively impact controls
at the transmission level?

!   What are my communication system
requirements to support an application?

!   Can applications share network bandwidth?

Building an integration framework

Traditionally, power grid and communication network domains have not resided within
a single simulator with relatively equal consideration to the complexity of each.

!   A number of very powerful, domain-specific tools exist:
!   Transmission (PSLF, Powerworld, DSATools, PST, etc.)
!   Distribution (WindMil, SynerGEE, CYMDIST, OpenDSS, GridLAB-D, etc.)
!   Telecommunications (OPNET, NetSim, ns-2, ns-3, OMNet++, etc.)

!   We do not need to recreate these tools
!   Re-use existing simulators
!   Libraries of models already exist
!   Most are well validated
!   Integrate and enjoy!!

Scalability and Co-Simulation

!   Co-simulation allows for expansion of capabilities with minimal investment
!   Allows for re-use of existing software AND models
!   Enables multi-scale modeling and simulation required for understanding TC2

!   FNCS is a framework for integrating simulators across multiple domains
!   Framework for Network Co-Simulation (FNCS – pronounced “Fee-nix”)
!   Developed for HPC applications across multiple platforms

FNCS

Distribution
(GridLAB-D)

Transmission
(GridPACK)

Wholesale Markets
(Matpower)

Retail Markets
(GridLAB-D)

Buildings
(EnergyPlus)

Communications
(ns-3)

GridLAB-D

EnergyPlus

EnergyPlus

EnergyPlus

GridLAB-D GridLAB-D

PowerWorld

Connected
In Development

Intended uses?

!   Distribution and Communications
!   Sensor data and control (VVO, inverters, reconfiguration, etc.)
!   Demand response and retail markets

!   Transmission and Communications
!   Wide Area Control (and Protection)
! Phasor Measurement Unit data collection and control
!   Communication pathways and redundancy

!   Transmission, Distribution and Communications
!   Trade-offs of distributed versus centralized controls
!   Hierarchical controls / reconfiguration during communication loss

!   Transmission, Distribution, Markets and Communications
!   Transactive energy/ancillary markets (with distributed resources)
!   Integration of wholesale and retail markets

!   Visualization
!   With connection to GridOPTICS
!   Generate simulated data sets for experimentation

FNCS Programming Guide

JEFF DAILY, JASON FULLER
LAURENTIU MARINOVICI, ANDREW FISHER, KHUSHBU AGARWAL
 Pacific Northwest National Laboratory
July 16, 2014

PNNL-SA-XXXXX

FNCS Programming Guide Overview

!   FNCS design goals.
!   FNCS architecture overview.

!   Overview on how to integrate simulators.
!   FNCS assumptions.

!   Programming with FNCS
!   Time management.
!   Object communication interface.
!   Synchronization algorithms in detail.

Challenges in power grid and
communication network co-simulation

!   Time synchronization.
!   Differences in time scales.
!   Messages between simulators

should be delivered without
incurring delays.

!   Re-use of models.
!   Integrating both transmission and

distribution level simulators.

This is our goal – and we are nearly there è

FNCS Design Goals

!   Re-use existing simulators as much as
possible.

!   Provide the environment for rapid co-
simulation development.

!   Support co-simulations for multiple
platforms: single node, multiple nodes,
clusters, cloud…

Simulator	

FNCS	
 API	

Modifica5ons	
 for	
 co-­‐
simula5on	

FNCS Architecture Overview

!   Programmers need to use the components for
!   Time management
!   The communication interface

!   All other components are hidden to ease the programming.
!   FNCS is programmed in C++, and interfaces for C, Java, Fortran are

provided with FNCS distribution.

FNCS Architecture Overview

!   Simulator core (the component that decides the next time step of the
simulation) needs to be modified to use the time management
component.
!   FNCS requires control over the next time step of the simulator.
!   For simulator with large time steps (e.g, 5mins) or for discrete event

simulators, FNCS can modify the next time step of the simulator.

FNCS Architecture Overview

!   Components that will communicate with other simulators need to be
modified to use the communication interface.
!   Components need to be assigned unique name.
!   Users need to handle the de-/serialization, or our serialization code

generator can be used.

Programming with FNCS

!   The public interfaces of FNCS:
!   Integrator – a class that provides time management

functions, framework initialization, and component
registration. All methods are static, so users do not
have to deal with object creations, deletion…

! ObjectCommInterface – provides methods for sending
and receiving messages. Instances created and
managed by Integrator.

Programming with FNCS - Object
Hierarchy (Abstract)

Integrator	

Simulator	
 Core	

AbsSyncAlgorithm	

ObjectCommInterface	

Simulator	
 Component	

AbsCommManager	

AbsNetworkInterface	

FNCS	

Implementa)on	

differs	

according	
 to	
 the	
 type	

of	
 simulator	

Implementa)on	

differs	
 according	
 to	

the	
 type	
 of	

simulator	
 and	
 the	

algorithm	

Implementa5on	

differs	
 according	
 to	

underlying	
 comm.	

lib	
 (zmq,	
 mpi,…)	

Programming with FNCS - Object
Hierarchy for Time Stepped Simulator

Integrator	

Simulator	
 Core	

GracePeriodSyncAlgor
ithm	

ObjectCommInterface	

Simulator	
 Component	

GracePeriodCommMa
nager	

ZmqNetworkInterface	

FNCS	

We	
 can	
 switch	
 to	
 a	

different	
 algorithm	

with	
 just	
 one	
 func5on	

call	

Op5mis5cTickSyncAlg
orithm	

Programming with FNCS - Object
Hierarchy for Network Simulator

Integrator	

Simulator	
 Core	

CommunicatorSyncAlg
orithm	

ObjectCommInterface	

Simulator	
 Component	

Communica5onComm
Manager	

ZmqNetworkInterface	

FNCS	

We	
 can	
 switch	
 to	
 a	

different	
 algorithm	

with	
 just	
 one	
 func5on	

call	

Op5mis5cCommSync
Algorithm	

Programming with FNCS: Initialization

!   Before the simulator starts a
timestep, FNCS needs to be
initialized.

!   Factory methods are called to
initialize the object hierarchy
according to the type of
simulator and user
requirements.

!   Properties about the simulator
and co-simulation can be
specified in a json file or in a
function call.

Integrator::InitIntegrator(char
*jsonfile,TIME initialTime)

Integrator::InitIntegrator<syncAl
go>(timemetric simmetric,
TIME initialTime, TIME
packetlostperiod, TIME
onetimestep,…)

Integrator::registerTimeCallbac
k(Callback<TIME> *given)

Programming with FNCS: Initialization

!   FNCS requires the following
from the simulator:
!   Time scale,
!   Initial time,
!   One time step,
!   A callback function that returns

the current time of the
simulator.

!   FNCS’ internal time is in
nanoseconds.

 initIntegratorGracePeriod(
 MILLISECONDS,
2300000000,
currentTime,10);

setregistercallback(getCurrentTime)
;
…
TIME getCurrentTime(){
 return currentTime;
}

Ini5alize	
 the	
 framework	
 for	
 a	

simulator	
 with	
 10millisecond	
 5me	

steps.	
 	

Programming with FNCS: Initialization

!   From users FNCS requires:
!   Sync algorithm to use during

co-simulation.
!   Parameters of the sync

algorithm.

initIntegratorGracePeriod(
 MILLISECONDS,
2300000000,
currentTime,10);

 initIntegratorOptimisticIncreasing(
MILLISECONDS,
2300000000,
currentTime,300000);

Init	
 func5on	
 with	
 conserva5ve	

synchroniza5on	
 algorith,m	

Init	
 func5on	
 with	
 specula5ve	

algorithm	
 with	
 increasing	

specula5on	
 strategy	
 and	
 5min	

ini5al	
 specula5on.	

Programming with FNCS: Initialization

!   For ease of programming C
interface hides some
initialization details.

!   C++ interface provides more
control.
!   Users can specify the network

interface to use, ZMQ, MPI
(experimental), or extend
FNCS with another network
interface.

!   Specify a custom strategy to
use for specification.

ZmqNetworkInterface *interface=new
ZmqNetworkInterface(true);
IncreasingSpeculationTimeStrategy
*st=new
IncreasingSpeculationTimeStrategy(
NANOSECONDS,300000000000);

Integrator::initIntegratorOptimisticCo
mm(interface,NANOSECONDS,
51000000000,0,300000000000,st);

sim_comm::CallBack<uint64_t,sim_c
omm::empty,sim_comm::empty,sim_c
omm::empty>
*timerCallback=sim_comm::CreateCa
llback(…);
Integrator::setTimeCallBack(timerCall
back);

Init	
 ZMQ	
 network	
 interface	
 for	
 network	

simulator	

Use	
 increasing	
 specula5on	
 strategy.	

Init	
 FNCS	
 for	
 a	
 network	
 simulator	
 with	

NANOSEOND	
 5mescale	
 and	
 specula5ve	
 sync	

algo.	

Register	
 callback	
 to	
 the	
 method/func5on	
 that	

returns	
 the	
 current	
 5me	
 of	
 the	
 simulator.	

Programming with FNCS: Time Management

!   FNCS provides two methods
for time management.
! timeStepStart() – Called at the

beginning of a time step.
! getNextTime() – Called at the

end of a time step.
!   The implementation of these

methods are provided in
concrete syncalgorithm
classes.

Integrator::timeStepStart(currentTi
me) -> wait for other simulators
iff synchronization is necessary
at time step currentTime.

Integrator::getNextTime(xurrentTim
e, nexTime) -> get the next
granted time for the simulator.

Time Management for a
Time Stepped Simulator

currentTime = initialTime;
do{

 Integrator::timeStepStart(currentTime);
 processTimeStep(currentTime);
 nextTime=getNextTimeStep();
 nextTime=Integrator::getNextTime(currentTime,
 nextTime);
 currentTime = nextTime;

}while(currentTime < endTime);

Time Management for a
Communication Network Simulator

while(!empty(eventQ)){
 toProcess=getNextEvent(eventQ);

 currentTime=toProcess.time;
 processEvent(toProcess);
 Integrator::timeStepStart(currentTime);
 if(!empty(eventQ))
 nextTime=getNextEvent(eventQ).time;
 else
 nextTime=Infinity;
 nextTime=Integrator::getNextTime(currentTime, nextTime);

}

getNextTime()	
 should	
 be	
 called	

before	
 processing	
 an	
 event.	

Time Management and
Inter-Simulator Message Delivery

!   Message exchange is designed
to deliver messages without
incurring delays (due to
synchronization).

!   Message delivery is realized
during synchronization.
!   Messages are buffered until the

synchronization is completed.
!   The call order of the time

management functions ensures
messages are delivered to the
network simulator on time!

t t+1

Sim1

Network
Sim.

t t+1

S
end all m

essages
generated at tim

e t

S
end all m

essages
that arrive at

destination on tim
e t+1

Key:

Call to function
timeStepStart()

Call to
function
getNextTime()
.
Message
delivery

Process events from time t to t+1

Internal
simulator
processing.

Time Management in FNCS:
Synchronization Algorithms

!   At the method getNextTime() FNCS calculate a Lower Bound on Time
Step (LBTS).

!   LBTS is a time step until which we are sure none of the simulator are
going to exchange message.
!   Calculation of LBTS is necessary for consistent delivery of inter-simulator

messages.
!   Co-simulations can consists of simulators with different time scales.

!   LBTS can lower than the next time step of the simulator.
!   Simulators with the coarser time scales with for simulators with fine time

scales.
!   FNCS provides 4 algorithms for time management.

Time Management in FNCS:
Conservative Algorithm

!   LBTS is always set to the
smallest next time step of
simulators.
1.  If there are in transit messages,

nextTime_i= Δt, Δt is the time-
step of the ith simulator.

2.  LBTS = Reduce_min(nextTime_i)
3.  If LBTS < nextTime_i, busy wait.

!   Networks simulator does not
participate in calculation of
LBTS.

!   Network simulator is always
synchronized with the smallest
next time step of the other
simulators, ensures on-time
delivery.

t(sec)	
 t	
 t+5	

t(milisec)	
 t	
 t+1	

t(nano-­‐sec)	
 t	

Sim1	

Sim2	

Network	

Sim	

Total	
 Send:	
 1	

Total	
 Received:	
 0	

t(sec)	
 t	
 t+1	

t(milisec)	
 t	
 t+1	

t(nano-­‐sec)	
 t	

Sim1	

Sim2	

Network	

Sim	

Total	
 Send:	
 1	

Total	
 Received:	
 0	

Before	
 synchroniza5on	
 at	
 5me	
 t	

t+1	

A^er	
 synchroniza5on	
 at	
 5me	
 t	

Busy	
 Wait	

Key:	

Current	
 5me	

in	
 the	

simulator.	

Next	
 5me	

calculates	
 by	

the	
 simulator	

Next	
 5me	

granted	
 for	
 the	

simulator	

•  Pros:	
 	

–  Does	
 not	
 require	
 addi5onal	

models	
 for	
 5me	

synchroniza5on.	

–  Does	
 not	
 delay	
 the	
 messages	

•  Cons:	
 	

–  Performance,	
 at	
 worst	
 case	

needs	
 to	
 synchronize	
 every	
 5me	

step	
 of	
 Sim2.	

–  To	
 many	
 message	
 exchanges.	

–  Suitable	
 for	
 short-­‐5me	
 co-­‐

simula5ons	
 on	
 one	
 computer.	

Time Management in FNCS:
Sleeping Conservative Algorithm

!   LBTS calculation is same
as the conservative
algorithm.

!   When LBTS < nextTime_i,
the simulator sleeps
instead of busy waiting.
!   Simulator is woken up when

LBTS == nextTime_i or when
it receives a message while
sleeping.

!   Reduces messages required
for synchronization, which in
turn increases performance.

t(sec)	
 t	
 t+5	

t(milisec)	
 t	
 t+1	

t(nano-­‐sec)	
 t	

Sim1	

Sim2	

Network	

Sim	

Total	
 Send:	
 0	

Total	
 Received:	
 0	

t(sec)	
 t	
 t+5	

t(milisec)	
 t	
 t+1	

t(nano-­‐sec)	
 t	

Sim1	

Sim2	

Network	

Sim	

Total	
 Send:	
 0	

Total	
 Received:	
 0	

Before	
 synchroniza5on	
 at	
 5me	
 t	

t+1	

A^er	
 synchroniza5on	
 at	
 5me	
 t	

Sleep	

Key:	

Current	
 5me	

in	
 the	

simulator.	

Next	
 5me	

calculates	
 by	

the	
 simulator	

Next	
 5me	

granted	
 for	
 the	

simulator	

•  Pros:	
 	

–  Does	
 not	
 require	
 addi5onal	

models	
 for	
 5me	

synchroniza5on.	

–  Reduces	
 number	
 of	
 messages	

required	
 for	
 simulators.	

–  Does	
 not	
 delay	
 the	
 messages	

•  Cons:	
 	

–  Performance,	
 at	
 worst	
 case	

needs	
 to	
 synchronize	
 every	
 5me	

step	
 of	
 Sim2.	

–  Suitable	
 for	
 short-­‐5me	
 co-­‐
simula5ons	
 on	
 mul'ple	

computers.	

Time Management in FNCS:
Speculative Algorithms

!   A simulator can potentially send a message at nextTime.
!   Conservative algorithms: Safe time synchronization choice, synchronize

at nextTime. (Synchronization is costly!)
!   Observation: Simulators do not need to send a message at every time

step! How can we avoid synchronization at every time step
without delaying message delivery?

!   Speculative time synchronization algorithm:
!   Speculate that the simulators will not send messages

until specTime >> LBTS
!   Fork, child processes run independently until specTime,

parents run the conservative algorithm.
!   Kill the children if they try to send a message before specTime.
!   Kill the parents if children do not send a message until specTime.
!   Fork is not costly -> uses copy on write!
!   Utilize CPU and available memory to increase the performance.

Time Management in FNCS:
Speculative Algorithm

!   The algorithm for calculating the
LBTS:
1.  Calculate the number of in-transit

messages (each simulator sends
the number of messages sent and
received).
1.  If there are in-transit messages

LBTS is Δt, Δt is the time-step of
the simulator with the highest time
scale.

2.  Else, LBTS is currentTime +
Δtnext , Δtnext is the minimum next
time.

3.  If currentTime + LBTS < specTime
1.  Fork(), children use specTime as

LBTS

2.  If currentTime + LBTS <
myNextTime then enter a busy wait
loop

t(sec)	
 t	
 t+5	

t(milisec)	
 t	
 t+1	

Sim1	

Sim2	

Comm.	

Sim.	

Total	
 Send:	
 0	

Total	
 Received:	
 0	

A^er	
 synchroniza5on	
 at	
 5me	
 t,	
 conserva5ve	
 sync.	

Busy	
 Wait	

t(nanosec)	
 t	
 t+1	

t(sec)	
 t	
 t+5	

t(milisec)	
 t	
 t+5	

Sim1	

Sim2	

Comm.	

Sim.	

Total	
 Send:	
 0	

Total	
 Received:	
 0	

A^er	
 synchroniza5on	
 at	
 5me	
 t,	
 Specula5on:	
 next	
 sync.	
 at	
 t+5	

t(nanosec)	
 t	
 t+5	

Execute	

independently	

Key:	

Current	
 5me	
 in	

the	
 simulator.	

Next	
 5me	
 granted	
 	

by	
 the	
 conserva5ve	

algorithm.	

Speculated	

next	
 5me.	

•  Pros:	
 	

–  Does	
 not	
 require	
 addi5onal	

models	
 for	
 5me	

synchroniza5on.	

–  Does	
 not	
 delay	
 the	
 messages.	

–  Improves	
 the	
 performance.	

•  Cons:	
 	

–  Might	
 not	
 work	
 if	
 the	
 simulators	

send	
 messages	
 frequently.	
 	

–  Threaded	
 simulators	
 need	
 to	
 be	

prepared	
 for	
 fork.	

–  Suitable	
 for	
 long	
 co-­‐simula5ons	

where	
 simulators	
 do	
 not	

exchange	
 messages	
 frequently.	

Time Management in FNCS:
Speculative Re-compute Algorithm

!   When a child process is launched, it
needs to register with the FNCS broker.
!   This is a costly operation!
!   Reduces performance when simulators

exchange messages frequently.

!   Speculative re-compute strategy is
designed to eliminate registrations.
!   Child processes are used to

discover the time steps of message
exchanges.

! specTime is always set to infinity.
!   Child processes execute until one

them send a message.
!   The time of message is send to the

parents, which in turn synchronize
at this time step.

t(sec)	
 t	
 t+5	

t(milisec)	
 t	
 t+1	

Sim1	

Sim2	

Comm.	

Sim.	

Total	
 Send:	
 0	

Total	
 Received:	
 0	

A^er	
 synchroniza5on	
 at	
 5me	
 t,	
 conserva5ve	
 sync.	

Busy	
 Wait	

t(nanosec)	
 t	
 t+1	

t(sec)	
 t	

t(milisec)	
 t	

Sim1	

Sim2	

Comm.	

Sim.	

Total	
 Send:	
 0	

Total	
 Received:	
 0	

A^er	
 synchroniza5on	
 at	
 5me	
 t,	
 Specula5on:	
 next	
 sync.	
 at	
 t+5	

t(nanosec)	
 t	

Execute	

independently	

Key:	

Current	
 5me	
 in	

the	
 simulator.	

Next	
 5me	
 granted	
 	

by	
 the	
 conserva5ve	

algorithm.	

Time	
 step	
 of	

message	

exchange	

t+1000	

T+1000ms	
 will	
 be	

used	
 in	
 the	
 parent	

processes	

•  Pros:	
 	

–  Does	
 not	
 require	
 addi5onal	

models	
 for	
 5me	

synchroniza5on.	

–  Improves	
 the	
 performance	
 for	

co-­‐simula5ons	
 with	
 simulators	

exchanging	
 messages	

frequently.	

•  Cons:	
 	

–  Might	
 not	
 work	
 if	
 the	
 simulators	

send	
 messages	
 frequently.	

–  Performance	
 improvement	
 not	

as	
 good	
 as	
 specula5ve	
 algorithm.	

–  Suitable	
 for	
 co-­‐simula5ons	
 where	

simulators	
 exchange	
 a	
 lot	
 of	

message.	
 	

Time Management in FNCS:
Sending/Receiving Messages.

!   The components of a
simulator that need to
communicate with other
simulators need to register
with FNCS.

!   Every component is assigned
an inbox and an outbox.

!   The component can select to
be notified when it receives a
message, or the messages
can be stored in inbox until it
reads them.
!   Notifications require

components to register a
callback function

ObjectCommInterface *interface=
Integrator::getCommInterface(<na
me_of_the_component>)

…
Message *mesg=new

Message(<from>,<to>,<timestep>,
<data>,<direct_or_network>);

Interface->send(mesg);
…
while(interface->hasMoreMessage()){

 Message *rm=interface-
>getNextMessage();
 //process rm.

}

Register	
 a	
 component	
 with	
 FNCS	

Send	
 a	
 new	
 message	

Get	
 buffered	
 messages	

Programming with FNCS

!   Extension points of FNCS:
! BufferStrategy: defines how messages are buffered.
! SynchronizationAlgorithm: FNCS provides 4 synchronization algorithms,

but users can extend the framework with an algorithm suitable for their
needs.

! SpeculationStrategy: FNCS provides synchronization based-on
speculative execution to speed up co-simulations. Users can extend
FNCS with strategies describing when to speculate.

! NetworkInterface: FNCS provides a well-defined interface for co-
simulation inter-process communication. Users can extend interface to
utilize an inter-process communication library. Currently, ZMQ is
supported, experimental support for MPI.

Demand Response/Real-Time Pricing
Example

JASON FULLER, JEFF DAILY
LAURENTIU MARINOVICI, ANDREW FISHER, KHUSHBU AGARWAL
 Pacific Northwest National Laboratory
July 16, 2014

PNNL-SA-XXXXX

Demand Response/Real-Time Pricing Example

!   RTP, double-auction, retail market
!   Market accepts demand and supply bids
!   Clears on five minute intervals
!   Designed to also manage capacity constraints at substation

More
Comfort

More
Savings

!   Acts as a distributed agent to offer
bids & respond to clearing prices

!   Consumer sets a preference for
“savings” versus “comfort”

!   Currently being tested as part of
the AEP gridSMART® ARRA
Demonstration in Columbus, OH

!   Residential energy management system

Pbase	

Basic Real-Time Price / Double Auction
Market – Typical Unconstrained Conditions

Base	
 retail	
 	

price	
 based	
 on	

PJM	
 5-­‐min	
 real-­‐
6me	
 market	

Unresponsive	

Loads	

Q, Load (MW)

P,
 P

ric
e

($
/M

W
h)

Responsive	

Loads	

Demand Curve:
sorted (P, Q)

bids from RTP-
DA customers

Pclear	

Qclear	

Feeder	

Capacity	

Varies	
 every	

5-­‐min	

Feeder	

Supply	

Curve	

!   Market clears
every 5-mins to
~match AC
load cycle

!   Cleared load
varies with
demand curve

!   Clearing price
is constant at
base retail
price

Basic Real-Time Price / Double Auction
Market – Typical Constrained Conditions

Base	
 retail	
 	

price	
 based	
 on	

PJM	
 5-­‐min	
 real-­‐
6me	
 market	

Unresponsive	

Loads	

Q, Load (MW)

P,
 P

ric
e

($
/M

W
h)

Responsive	

Loads	

Demand Curve:
sorted (P, Q)

bids from RTP-
DA customers

Pclear	

Qclear	

Feeder	

Capacity	

Feeder	

Supply	

Curve	

Pbase	

!   Market clears
every 5-mins

!   Cleared load is
constant at
feeder capacity

!   Clearing price
varies to keep
load at capacity

Ideal result is…

!   Decreased wholesale energy costs
!   Peak demand limited to feeder capacity

IEEE-13 node system with 900 residential loads simulated in GridLAB-D™

www.gridlabd.org	

But what happens when including
communication latency?

!   IEEE-13 node model with 900
residential loads and controllers
modeled in GridLAB-D

!   Model was modified to work within

FNCS framework

!   An ns-3 communication network
model was created (radial WIFI)

!   EXTREME communication delays

(for Wifi) were considered

But what happens when including
communication latency?

!   Excessive communication delays during critical period caused an
“accounting error” in auction (this was considered in Demo deployment)

As simulated in GridLAB-D and ns-3

www.gridlabd.org	

www.nsnam.org	

A few comments

!   These communication concerns were dealt with during the design of
the demonstration system
!   However, it was mostly engineering judgment and the timescale of control

is such that latency is not a major factor

!   A co-simulation environment can help determine the most economic
means of deploying smart grid technologies, specifically in terms of
communication requirements for successful system operations
!   How much communication infrastructure do I need?
!   What affect will latency have on my monitoring / control scheme?

!   This will become more important as
!   Sampling / control action periods are decreased (real-time control)
!   Multiple applications are layered over the same communication systems

Now let’s add a transmission element…

Pline

!   Want to be able to integrate
>2 simulators
!   ns-3™
!   GridLAB-D™
!   transmission solver

!   Example: Wide Area
Monitoring, Protection, and
Control (WAMPAC)

!   Want to limit the power
flowing through branch34

!   Use a price “signal”
broadcasted to a distribution
circuit to limit demand

GridLAB-D

“Controller”

!   GridLAB-D is posting current
load to a transmission
substation

!   The transmission solver is
performing power flow
calculations with updated load
information

!   The control object is
calculating the change in
price needed

!   A new price is being
broadcasted to distributed
devices in GridLAB-D via ns-3

Pline

GridLAB-D

“Controller”

What data is being exchanged?

Relatively simple control design

!   Simple PI control design
!   Only used to show how the software works (does not deal with revenue,

“price as a signal”, regulatory issues, etc.)

!   Demand response consumers are using the same mechanism as
previous use case

!   “Price” is now derived as a function of the system constraints

Some results

!   PI controller takes some time
to learn the necessary price
adjustment (not well tuned)
!   In actual application, we

would take some time to tune
the parameters

!   But, we can see the response
within GridLAB-D
!   Reduces the demand from

hour 40 through 46
!   Price signal is being

produced in the transmission
solver (this could be replaced
with Matpower and LMPs)

!   Price is broadcasted via ns-3
(we could look at affects of
communication delays)

P
ow

er
 (M

W
)

Time (hours)

Reduced demand
in GridLAB-D

Closing Remarks

JEFF DAILY, JASON FULLER
LAURENTIU MARINOVICI, ANDREW FISHER, KHUSHBU AGARWAL
 Pacific Northwest National Laboratory
July 16, 2014

PNNL-SA-XXXXX

Closing remarks

!   Simple example(s) to demonstrate the simulation environment
!   Any tool could be replaced with another of “better value”
!   Complexity of design is up to user

!   We will continue developing interconnections for further
experimentation and additional use cases
!   Exploring interface with GridPACK solvers
!   Expanding MATPOWER connection
!   Expanding GridLAB-D connection
!   Finishing the interface for EnergyPlus
!   Adding an interface to GridOPTICS

(for data management and visualization)
!   Suggestions?

How to Contribute, Questions

!   Sources soon to be on GridOPTICS github site.
! https://github.com/GridOPTICS/FNCS (empty placeholder)
!   Can use issue tracker right now
!   Code rollout is underway

!   Email us developers directly
! jeff.daily@pnnl.gov, PI
! jason.fuller@pnnl.gov, co-PI

July 17, 2014 48

