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A good scientist is a person with original 
ideas. 
  
A good engineer is a person who makes a 
design that works with as few original ideas as 
possible.  
 
~~Freeman Dyson  



What is the need? 

!   Smart grid brings information and communication technologies 
together with power systems 
!   Sensors and equipment gather information  
!   Information is processed locally or centrally 
!   Decisions are made based on this information 

!   But before deploying new technologies, 
 it is important to understand: 
!   What is the performance  

of a given technology? 
!   How will new technologies interact 

with existing technologies? 
!   Will assets at the distribution  

level negatively impact controls  
at the transmission level? 

!   What are my communication system  
requirements to support an application? 

!   Can applications share network bandwidth? 



Building an integration framework 

Traditionally, power grid and communication network domains have not resided within 
a single simulator with relatively equal consideration to the complexity of each. 

!   A number of very powerful, domain-specific tools exist: 
!   Transmission (PSLF, Powerworld, DSATools, PST, etc.) 
!   Distribution (WindMil, SynerGEE, CYMDIST, OpenDSS, GridLAB-D, etc.) 
!   Telecommunications (OPNET, NetSim, ns-2, ns-3, OMNet++, etc.) 

!   We do not need to recreate these tools 
!   Re-use existing simulators  
!   Libraries of models already exist 
!   Most are well validated 
!   Integrate and enjoy!! 



Scalability and Co-Simulation 

!   Co-simulation allows for expansion of capabilities with minimal investment 
!   Allows for re-use of existing software AND models 
!   Enables multi-scale modeling and simulation required for understanding TC2 

!   FNCS is a framework for integrating simulators across multiple domains 
!   Framework for Network Co-Simulation (FNCS – pronounced “Fee-nix”) 
!   Developed for HPC applications across multiple platforms 
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Intended uses? 

!   Distribution and Communications 
!   Sensor data and control (VVO, inverters, reconfiguration, etc.) 
!   Demand response and retail markets 

!   Transmission and Communications 
!   Wide Area Control (and Protection) 
! Phasor Measurement Unit data collection and control 
!   Communication pathways and redundancy 

!   Transmission, Distribution and Communications 
!   Trade-offs of distributed versus centralized controls 
!   Hierarchical controls / reconfiguration during communication loss 

!   Transmission, Distribution, Markets and Communications 
!   Transactive energy/ancillary markets (with distributed resources) 
!   Integration of wholesale and retail markets 

!   Visualization 
!   With connection to GridOPTICS 
!   Generate simulated data sets for experimentation 
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FNCS Programming Guide Overview 

!   FNCS design goals. 
!   FNCS architecture overview. 

!   Overview on how to integrate simulators. 
!   FNCS assumptions. 

!   Programming with FNCS 
!   Time management. 
!   Object communication interface. 
!   Synchronization algorithms in detail. 



Challenges in power grid and 
communication network co-simulation 

!   Time synchronization.  
!   Differences in time scales. 
!   Messages between simulators 

should be delivered without 
incurring delays.  

!   Re-use of models.  
!   Integrating both transmission and 

distribution level simulators. 

This is our goal – and we are nearly there è 



FNCS Design Goals 

!   Re-use existing simulators as much as 
possible. 

!   Provide the environment for rapid co-
simulation development. 

!   Support co-simulations for multiple 
platforms: single node, multiple nodes, 
clusters, cloud… 

Simulator	
  

FNCS	
  API	
  

Modifica5ons	
  for	
  co-­‐
simula5on	
  



FNCS Architecture Overview 

!   Programmers need to use the components for 
!   Time management 
!   The communication interface 

!   All other components are hidden to ease the programming. 
!   FNCS is programmed in C++, and interfaces for C, Java, Fortran are 

provided with FNCS distribution. 



FNCS Architecture Overview 

!   Simulator core (the component that decides the next time step of the 
simulation) needs to be modified to use the time management 
component. 
!   FNCS requires control over the next time step of the simulator. 
!   For simulator with large time steps (e.g, 5mins) or for discrete event 

simulators, FNCS can modify the next time step of the simulator. 



FNCS Architecture Overview 

!   Components that will communicate with other simulators need to be 
modified to use the communication interface. 
!   Components need to be assigned unique name. 
!   Users need to handle the de-/serialization, or our serialization code 

generator can be used. 



Programming with FNCS 

!   The public interfaces of FNCS: 
!   Integrator – a class that provides time management 

functions, framework initialization, and component 
registration. All methods are static, so users do not 
have to deal with object creations, deletion… 

! ObjectCommInterface – provides methods for sending 
and receiving messages. Instances created and 
managed by Integrator.  



Programming with FNCS - Object 
Hierarchy (Abstract) 
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Programming with FNCS - Object 
Hierarchy for Time Stepped Simulator 
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Programming with FNCS - Object 
Hierarchy for Network Simulator 
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Programming with FNCS: Initialization 

!   Before the simulator starts a 
timestep, FNCS needs to be 
initialized. 

!   Factory methods are called to 
initialize the object hierarchy 
according to the type of 
simulator and user 
requirements. 

!   Properties about the simulator 
and co-simulation can be 
specified in a json file or in a 
function call. 

Integrator::InitIntegrator(char 
*jsonfile,TIME initialTime) 
 
Integrator::InitIntegrator<syncAl
go>(timemetric simmetric, 
TIME initialTime, TIME 
packetlostperiod, TIME 
onetimestep,…) 
 
Integrator::registerTimeCallbac
k(Callback<TIME> *given) 



Programming with FNCS: Initialization 

!   FNCS requires the following 
from the simulator: 
!   Time scale, 
!   Initial time, 
!   One time step, 
!   A callback function that returns 

the current time of the 
simulator. 

!   FNCS’ internal time is in 
nanoseconds. 

 initIntegratorGracePeriod( 
 MILLISECONDS,                                     
2300000000,  
currentTime,10); 
 
setregistercallback(getCurrentTime)
; 
… 
TIME getCurrentTime(){ 
 return currentTime; 
} 

Ini5alize	
  the	
  framework	
  for	
  a	
  
simulator	
  with	
  10millisecond	
  5me	
  

steps.	
  	
  



Programming with FNCS: Initialization 

!   From users FNCS requires: 
!   Sync algorithm to use during 

co-simulation. 
!   Parameters of the sync 

algorithm. 
 

initIntegratorGracePeriod( 
 MILLISECONDS,                                     
2300000000,  
currentTime,10); 
 
 
 initIntegratorOptimisticIncreasing( 
MILLISECONDS, 
2300000000, 
currentTime,300000); 

Init	
  func5on	
  with	
  conserva5ve	
  
synchroniza5on	
  algorith,m	
  

Init	
  func5on	
  with	
  specula5ve	
  
algorithm	
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  strategy	
  and	
  5min	
  
ini5al	
  specula5on.	
  



Programming with FNCS: Initialization 

!   For ease of programming C 
interface hides some 
initialization details. 

!   C++ interface provides more 
control. 
!   Users can specify the network 

interface to use, ZMQ, MPI 
(experimental), or extend 
FNCS with another network 
interface. 

!   Specify a custom strategy to 
use for specification. 

ZmqNetworkInterface *interface=new 
ZmqNetworkInterface(true); 
IncreasingSpeculationTimeStrategy 
*st=new 
IncreasingSpeculationTimeStrategy(
NANOSECONDS,300000000000); 
 
Integrator::initIntegratorOptimisticCo
mm(interface,NANOSECONDS,
51000000000,0,300000000000,st); 
 
sim_comm::CallBack<uint64_t,sim_c
omm::empty,sim_comm::empty,sim_c
omm::empty> 
*timerCallback=sim_comm::CreateCa
llback(…); 
Integrator::setTimeCallBack(timerCall
back); 
 

Init	
  ZMQ	
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  network	
  
simulator	
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Programming with FNCS: Time Management 

!   FNCS provides two methods 
for time management. 
! timeStepStart() – Called at the 

beginning of a time step. 
! getNextTime() – Called at the 

end of a time step. 
!   The implementation of these 

methods are provided in 
concrete syncalgorithm 
classes. 

Integrator::timeStepStart(currentTi
me) -> wait for other simulators 
iff synchronization is necessary 
at time step currentTime. 

Integrator::getNextTime(xurrentTim
e, nexTime) -> get the next 
granted time for the simulator. 



Time Management for a 
Time Stepped Simulator 

currentTime = initialTime; 
do{ 

 Integrator::timeStepStart(currentTime); 
 processTimeStep(currentTime); 
 nextTime=getNextTimeStep(); 
 nextTime=Integrator::getNextTime(currentTime, 
  nextTime); 
 currentTime = nextTime; 

}while(currentTime < endTime); 



Time Management for a  
Communication Network Simulator 

while(!empty(eventQ)){ 
  toProcess=getNextEvent(eventQ); 

 currentTime=toProcess.time; 
 processEvent(toProcess); 
 Integrator::timeStepStart(currentTime); 
 if(!empty(eventQ)) 
   nextTime=getNextEvent(eventQ).time; 
 else 
   nextTime=Infinity; 
 nextTime=Integrator::getNextTime(currentTime, nextTime); 

} 

getNextTime()	
  should	
  be	
  called	
  
before	
  processing	
  an	
  event.	
  



Time Management and  
Inter-Simulator Message Delivery 

!   Message exchange is designed 
to deliver messages without 
incurring delays (due to 
synchronization). 

!   Message delivery is realized 
during synchronization. 
!   Messages are buffered until the 

synchronization is completed. 
!   The call order of the time 

management functions ensures 
messages are delivered to the 
network simulator on time! 
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S
end all m
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destination on tim
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Call to 
function 
getNextTime()
. 
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delivery 

Process events from time t to t+1 

Internal 
simulator 
processing. 



Time Management in FNCS:  
Synchronization Algorithms 

!   At the method getNextTime() FNCS calculate a Lower Bound on Time 
Step (LBTS). 

!   LBTS is a time step until which we are sure none of the simulator are 
going to exchange message. 
!   Calculation of LBTS is necessary for consistent delivery of inter-simulator 

messages. 
!   Co-simulations can consists of simulators with different time scales. 

!   LBTS can lower than the next time step of the simulator. 
!   Simulators with the coarser time scales with for simulators with fine time 

scales.  
!   FNCS provides 4 algorithms for time management. 



Time Management in FNCS:  
Conservative Algorithm 

!   LBTS is always set to the 
smallest next time step of 
simulators. 
1.  If there are in transit messages, 

nextTime_i= Δt, Δt is the time-
step of the ith simulator. 

2.  LBTS = Reduce_min(nextTime_i) 
3.  If LBTS < nextTime_i, busy wait. 

!   Networks simulator does not 
participate in calculation of 
LBTS.  

!   Network simulator is always 
synchronized with the smallest 
next time step of the other 
simulators, ensures on-time 
delivery. 
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Time Management in FNCS: 
Sleeping Conservative Algorithm 

!   LBTS calculation is same 
as the conservative 
algorithm. 

!   When LBTS < nextTime_i, 
the simulator sleeps 
instead of busy waiting. 
!   Simulator is woken up when 

LBTS == nextTime_i or when 
it receives a message while 
sleeping. 

!   Reduces messages required 
for synchronization, which in 
turn increases performance. 
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Time Management in FNCS:  
Speculative Algorithms 

!   A simulator can potentially send a message at nextTime. 
!   Conservative  algorithms: Safe time synchronization choice, synchronize 

at nextTime. (Synchronization is costly!) 
!   Observation: Simulators do not need to send a message at every time 

step! How can we avoid synchronization at every time step  
without delaying message delivery? 

!   Speculative time synchronization algorithm: 
!   Speculate that the simulators will not send messages  

until specTime >> LBTS 
!   Fork, child processes run independently until specTime,  

parents run the conservative algorithm. 
!   Kill the children if they try to send a message before specTime. 
!   Kill the parents if children do not send a message until specTime. 
!   Fork is not costly -> uses copy on write! 
!   Utilize CPU and available memory to increase the performance. 



Time Management in FNCS:  
Speculative Algorithm 

!   The algorithm for calculating the 
LBTS: 
1.  Calculate the number of in-transit 

messages (each simulator sends 
the number of messages sent and 
received). 
1.  If there are in-transit messages 

LBTS is Δt, Δt is the time-step of 
the simulator with the highest time 
scale. 

2.  Else, LBTS is currentTime + 
Δtnext , Δtnext is the minimum next 
time. 

3.  If currentTime + LBTS < specTime 
1.  Fork(), children use specTime as 

LBTS 

2.  If currentTime + LBTS < 
myNextTime then enter a busy wait 
loop 
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Time Management in FNCS:  
Speculative Re-compute Algorithm 

!   When a child process is launched, it 
needs to register with the FNCS broker. 
!   This is a costly operation! 
!   Reduces performance when simulators 

exchange messages frequently. 

!   Speculative re-compute strategy is 
designed to eliminate registrations. 
!   Child processes are used to 

discover the time steps of message 
exchanges. 

! specTime is always set to infinity. 
!   Child processes execute until one 

them send a message. 
!   The time of message is send to the 

parents, which in turn synchronize 
at this time step. 
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Time Management in FNCS:  
Sending/Receiving Messages. 

!   The components of a 
simulator that need to 
communicate with other 
simulators need to register 
with FNCS. 

!   Every component is assigned 
an inbox and an outbox. 

!   The component can select to 
be notified when it receives a 
message, or the messages 
can be stored in inbox until it 
reads them. 
!   Notifications require 

components to register a 
callback function 

ObjectCommInterface *interface= 
Integrator::getCommInterface(<na
me_of_the_component>) 

… 
Message *mesg=new 

Message(<from>,<to>,<timestep>,
<data>,<direct_or_network>); 

Interface->send(mesg); 
… 
while(interface->hasMoreMessage()){ 

 Message *rm=interface-
>getNextMessage(); 
 //process rm. 

} 
 

Register	
  a	
  component	
  with	
  FNCS	
  

Send	
  a	
  new	
  message	
  

Get	
  buffered	
  messages	
  



Programming with FNCS 

!   Extension points of FNCS: 
! BufferStrategy: defines how messages are buffered. 
! SynchronizationAlgorithm: FNCS provides 4 synchronization algorithms, 

but users can extend the framework with an algorithm suitable for their 
needs. 

! SpeculationStrategy: FNCS provides synchronization based-on 
speculative execution to speed up co-simulations. Users can extend 
FNCS with strategies describing when to speculate. 

! NetworkInterface: FNCS provides a well-defined interface for co-
simulation inter-process communication. Users can extend interface to 
utilize an inter-process communication library. Currently, ZMQ is 
supported, experimental support for MPI. 
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Demand Response/Real-Time Pricing Example 

!   RTP, double-auction, retail market 
!   Market accepts demand and supply bids 
!   Clears on five minute intervals 
!   Designed to also manage capacity constraints at substation 

More  
Comfort 

More 
Savings 

!   Acts as a distributed agent to offer 
bids & respond to clearing prices 

!   Consumer sets a preference for 
“savings” versus “comfort” 

!   Currently being tested as part of 
the AEP gridSMART® ARRA 
Demonstration in Columbus, OH 

!   Residential energy management system 



Pbase	
  

Basic Real-Time Price / Double Auction 
Market –  Typical Unconstrained Conditions 

Base	
  retail	
  	
  
price	
  based	
  on	
  
PJM	
  5-­‐min	
  real-­‐
6me	
  market	
  

Unresponsive	
  
Loads	
  

Q, Load (MW) 

P,
 P

ric
e 

($
/M

W
h)

 

Responsive	
  
Loads	
  

Demand Curve: 
sorted  (P, Q) 

bids from RTP-
DA customers 

Pclear	
  

Qclear	
  

Feeder	
  
Capacity	
  

Varies	
  every	
  
5-­‐min	
  

Feeder	
  
Supply	
  
Curve	
  

!   Market clears 
every 5-mins to 
~match AC 
load cycle 

!   Cleared load 
varies with 
demand curve 

!   Clearing price 
is constant at 
base retail 
price 



Basic Real-Time Price / Double Auction 
Market –  Typical Constrained Conditions 

Base	
  retail	
  	
  
price	
  based	
  on	
  
PJM	
  5-­‐min	
  real-­‐
6me	
  market	
  

Unresponsive	
  
Loads	
  

Q, Load (MW) 

P,
 P

ric
e 

($
/M

W
h)

 

Responsive	
  
Loads	
  

Demand Curve: 
sorted  (P, Q) 

bids from RTP-
DA customers 

Pclear	
  

Qclear	
  

Feeder	
  
Capacity	
  

Feeder	
  
Supply	
  
Curve	
  

Pbase	
  

!   Market clears 
every 5-mins 

!   Cleared load is 
constant at 
feeder capacity 

!   Clearing price 
varies to keep 
load at capacity 



Ideal result is… 

!   Decreased wholesale energy costs 
!   Peak demand limited to feeder capacity 

IEEE-13 node system with 900 residential loads simulated in GridLAB-D™ 

www.gridlabd.org	
  



But what happens when including 
communication latency? 

!   IEEE-13 node model with 900 
residential loads and controllers 
modeled in GridLAB-D 

 
!   Model was modified to work within 

FNCS framework 

!   An ns-3 communication network 
model was created (radial WIFI) 

 
!   EXTREME communication delays 

(for Wifi) were considered 



But what happens when including 
communication latency? 

!   Excessive communication delays during critical period caused an 
“accounting error” in auction (this was considered in Demo deployment) 

As simulated in GridLAB-D and ns-3 

www.gridlabd.org	
  

www.nsnam.org	
  



A few comments 

!   These communication concerns were dealt with during the design of 
the demonstration system 
!   However, it was mostly engineering judgment and the timescale of control 

is such that latency is not a major factor 

!   A co-simulation environment can help determine the most economic 
means of deploying smart grid technologies, specifically in terms of 
communication requirements for successful system operations 
!   How much communication infrastructure do I need? 
!   What affect will latency have on my monitoring / control scheme? 

!   This will become more important as 
!   Sampling / control action periods are decreased (real-time control) 
!   Multiple applications are layered over the same communication systems 



Now let’s add a transmission element… 

Pline 

!   Want to be able to integrate 
>2 simulators 
!   ns-3™ 
!   GridLAB-D™ 
!   transmission solver 

!   Example: Wide Area 
Monitoring, Protection, and 
Control (WAMPAC) 

!   Want to limit the power 
flowing through branch34 

!   Use a price “signal” 
broadcasted to a distribution 
circuit to limit demand 

GridLAB-D 

“Controller” 



!   GridLAB-D is posting current 
load to a transmission 
substation 

!   The transmission solver is 
performing power flow 
calculations with updated load 
information 

!   The control object is 
calculating the change in 
price needed 

!   A new price is being 
broadcasted to distributed 
devices in GridLAB-D via ns-3 

Pline 

GridLAB-D 

“Controller” 

What data is being exchanged? 



Relatively simple control design 

!   Simple PI control design  
!   Only used to show how the software works (does not deal with revenue, 

“price as a signal”, regulatory issues, etc.) 

!   Demand response consumers are using the same mechanism as 
previous use case 

!   “Price” is now derived as a function of the system constraints 



Some results 

!   PI controller takes some time 
to learn the necessary price 
adjustment (not well tuned) 
!   In actual application, we 

would take some time to tune 
the parameters 

!   But, we can see the response 
within GridLAB-D 
!   Reduces the demand from 

hour 40 through 46 
!   Price signal is being 

produced in the transmission 
solver (this could be replaced 
with Matpower and LMPs) 

!   Price is broadcasted via ns-3 
(we could look at affects of 
communication delays)  

P
ow

er
 (M

W
) 

Time (hours) 

Reduced demand 
in GridLAB-D 
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Closing remarks 

!   Simple example(s) to demonstrate the simulation environment 
!   Any tool could be replaced with another of “better value” 
!   Complexity of design is up to user 

!   We will continue developing interconnections for further 
experimentation and additional use cases 
!   Exploring interface with GridPACK solvers 
!   Expanding MATPOWER connection 
!   Expanding GridLAB-D connection 
!   Finishing the interface for EnergyPlus 
!   Adding an interface to GridOPTICS 

(for data management and visualization) 
!   Suggestions? 



How to Contribute, Questions 

!   Sources soon to be on GridOPTICS github site. 
! https://github.com/GridOPTICS/FNCS (empty placeholder) 
!   Can use issue tracker right now 
!   Code rollout is underway 

!   Email us developers directly 
! jeff.daily@pnnl.gov, PI 
! jason.fuller@pnnl.gov, co-PI 
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