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A good scientist is a person with original 
ideas. 
  
A good engineer is a person who makes a 
design that works with as few original ideas as 
possible.  
 
~~Freeman Dyson  



What is the need? 

!   Smart grid brings information and communication technologies 
together with power systems 
!   Sensors and equipment gather information  
!   Information is processed locally or centrally 
!   Decisions are made based on this information 

!   But before deploying new technologies, 
 it is important to understand: 
!   What is the performance  

of a given technology? 
!   How will new technologies interact 

with existing technologies? 
!   Will assets at the distribution  

level negatively impact controls  
at the transmission level? 

!   What are my communication system  
requirements to support an application? 

!   Can applications share network bandwidth? 



Building an integration framework 

Traditionally, power grid and communication network domains have not resided within 
a single simulator with relatively equal consideration to the complexity of each. 

!   A number of very powerful, domain-specific tools exist: 
!   Transmission (PSLF, Powerworld, DSATools, PST, etc.) 
!   Distribution (WindMil, SynerGEE, CYMDIST, OpenDSS, GridLAB-D, etc.) 
!   Telecommunications (OPNET, NetSim, ns-2, ns-3, OMNet++, etc.) 

!   We do not need to recreate these tools 
!   Re-use existing simulators  
!   Libraries of models already exist 
!   Most are well validated 
!   Integrate and enjoy!! 



Scalability and Co-Simulation 

!   Co-simulation allows for expansion of capabilities with minimal investment 
!   Allows for re-use of existing software AND models 
!   Enables multi-scale modeling and simulation required for understanding TC2 

!   FNCS is a framework for integrating simulators across multiple domains 
!   Framework for Network Co-Simulation (FNCS – pronounced “Fee-nix”) 
!   Developed for HPC applications across multiple platforms 

FNCS 

Distribution 
(GridLAB-D) 

Transmission 
(GridPACK) 

Wholesale Markets 
(Matpower) 

Retail Markets 
(GridLAB-D) 

Buildings 
(EnergyPlus) 

Communications 
(ns-3) 

GridLAB-D 

EnergyPlus 

EnergyPlus 

EnergyPlus 

GridLAB-D GridLAB-D 

PowerWorld 

Connected 
In Development 



Intended uses? 

!   Distribution and Communications 
!   Sensor data and control (VVO, inverters, reconfiguration, etc.) 
!   Demand response and retail markets 

!   Transmission and Communications 
!   Wide Area Control (and Protection) 
! Phasor Measurement Unit data collection and control 
!   Communication pathways and redundancy 

!   Transmission, Distribution and Communications 
!   Trade-offs of distributed versus centralized controls 
!   Hierarchical controls / reconfiguration during communication loss 

!   Transmission, Distribution, Markets and Communications 
!   Transactive energy/ancillary markets (with distributed resources) 
!   Integration of wholesale and retail markets 

!   Visualization 
!   With connection to GridOPTICS 
!   Generate simulated data sets for experimentation 
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FNCS Programming Guide Overview 

!   FNCS design goals. 
!   FNCS architecture overview. 

!   Overview on how to integrate simulators. 
!   FNCS assumptions. 

!   Programming with FNCS 
!   Time management. 
!   Object communication interface. 
!   Synchronization algorithms in detail. 



Challenges in power grid and 
communication network co-simulation 

!   Time synchronization.  
!   Differences in time scales. 
!   Messages between simulators 

should be delivered without 
incurring delays.  

!   Re-use of models.  
!   Integrating both transmission and 

distribution level simulators. 

This is our goal – and we are nearly there è 



FNCS Design Goals 

!   Re-use existing simulators as much as 
possible. 

!   Provide the environment for rapid co-
simulation development. 

!   Support co-simulations for multiple 
platforms: single node, multiple nodes, 
clusters, cloud… 

Simulator	  

FNCS	  API	  

Modifica5ons	  for	  co-‐
simula5on	  



FNCS Architecture Overview 

!   Programmers need to use the components for 
!   Time management 
!   The communication interface 

!   All other components are hidden to ease the programming. 
!   FNCS is programmed in C++, and interfaces for C, Java, Fortran are 

provided with FNCS distribution. 



FNCS Architecture Overview 

!   Simulator core (the component that decides the next time step of the 
simulation) needs to be modified to use the time management 
component. 
!   FNCS requires control over the next time step of the simulator. 
!   For simulator with large time steps (e.g, 5mins) or for discrete event 

simulators, FNCS can modify the next time step of the simulator. 



FNCS Architecture Overview 

!   Components that will communicate with other simulators need to be 
modified to use the communication interface. 
!   Components need to be assigned unique name. 
!   Users need to handle the de-/serialization, or our serialization code 

generator can be used. 



Programming with FNCS 

!   The public interfaces of FNCS: 
!   Integrator – a class that provides time management 

functions, framework initialization, and component 
registration. All methods are static, so users do not 
have to deal with object creations, deletion… 

! ObjectCommInterface – provides methods for sending 
and receiving messages. Instances created and 
managed by Integrator.  



Programming with FNCS - Object 
Hierarchy (Abstract) 

Integrator	  

Simulator	  Core	  

AbsSyncAlgorithm	  

ObjectCommInterface	  

Simulator	  Component	  

AbsCommManager	  

AbsNetworkInterface	  
FNCS	  

Implementa)on	  
differs	  

according	  to	  the	  type	  
of	  simulator	  

Implementa)on	  
differs	  according	  to	  

the	  type	  of	  
simulator	  and	  the	  

algorithm	  

Implementa5on	  
differs	  according	  to	  
underlying	  comm.	  
lib	  (zmq,	  mpi,…)	  



Programming with FNCS - Object 
Hierarchy for Time Stepped Simulator 

Integrator	  

Simulator	  Core	  

GracePeriodSyncAlgor
ithm	  

ObjectCommInterface	  

Simulator	  Component	  

GracePeriodCommMa
nager	  

ZmqNetworkInterface	  
FNCS	  

We	  can	  switch	  to	  a	  
different	  algorithm	  

with	  just	  one	  func5on	  
call	  

Op5mis5cTickSyncAlg
orithm	  



Programming with FNCS - Object 
Hierarchy for Network Simulator 

Integrator	  

Simulator	  Core	  

CommunicatorSyncAlg
orithm	  

ObjectCommInterface	  

Simulator	  Component	  

Communica5onComm
Manager	  

ZmqNetworkInterface	  
FNCS	  

We	  can	  switch	  to	  a	  
different	  algorithm	  

with	  just	  one	  func5on	  
call	  

Op5mis5cCommSync
Algorithm	  



Programming with FNCS: Initialization 

!   Before the simulator starts a 
timestep, FNCS needs to be 
initialized. 

!   Factory methods are called to 
initialize the object hierarchy 
according to the type of 
simulator and user 
requirements. 

!   Properties about the simulator 
and co-simulation can be 
specified in a json file or in a 
function call. 

Integrator::InitIntegrator(char 
*jsonfile,TIME initialTime) 
 
Integrator::InitIntegrator<syncAl
go>(timemetric simmetric, 
TIME initialTime, TIME 
packetlostperiod, TIME 
onetimestep,…) 
 
Integrator::registerTimeCallbac
k(Callback<TIME> *given) 



Programming with FNCS: Initialization 

!   FNCS requires the following 
from the simulator: 
!   Time scale, 
!   Initial time, 
!   One time step, 
!   A callback function that returns 

the current time of the 
simulator. 

!   FNCS’ internal time is in 
nanoseconds. 

 initIntegratorGracePeriod( 
 MILLISECONDS,                                     
2300000000,  
currentTime,10); 
 
setregistercallback(getCurrentTime)
; 
… 
TIME getCurrentTime(){ 
 return currentTime; 
} 

Ini5alize	  the	  framework	  for	  a	  
simulator	  with	  10millisecond	  5me	  

steps.	  	  



Programming with FNCS: Initialization 

!   From users FNCS requires: 
!   Sync algorithm to use during 

co-simulation. 
!   Parameters of the sync 

algorithm. 
 

initIntegratorGracePeriod( 
 MILLISECONDS,                                     
2300000000,  
currentTime,10); 
 
 
 initIntegratorOptimisticIncreasing( 
MILLISECONDS, 
2300000000, 
currentTime,300000); 

Init	  func5on	  with	  conserva5ve	  
synchroniza5on	  algorith,m	  

Init	  func5on	  with	  specula5ve	  
algorithm	  with	  increasing	  

specula5on	  strategy	  and	  5min	  
ini5al	  specula5on.	  



Programming with FNCS: Initialization 

!   For ease of programming C 
interface hides some 
initialization details. 

!   C++ interface provides more 
control. 
!   Users can specify the network 

interface to use, ZMQ, MPI 
(experimental), or extend 
FNCS with another network 
interface. 

!   Specify a custom strategy to 
use for specification. 

ZmqNetworkInterface *interface=new 
ZmqNetworkInterface(true); 
IncreasingSpeculationTimeStrategy 
*st=new 
IncreasingSpeculationTimeStrategy(
NANOSECONDS,300000000000); 
 
Integrator::initIntegratorOptimisticCo
mm(interface,NANOSECONDS,
51000000000,0,300000000000,st); 
 
sim_comm::CallBack<uint64_t,sim_c
omm::empty,sim_comm::empty,sim_c
omm::empty> 
*timerCallback=sim_comm::CreateCa
llback(…); 
Integrator::setTimeCallBack(timerCall
back); 
 

Init	  ZMQ	  network	  interface	  for	  network	  
simulator	  

Use	  increasing	  specula5on	  strategy.	  

Init	  FNCS	  for	  a	  network	  simulator	  with	  
NANOSEOND	  5mescale	  and	  specula5ve	  sync	  

algo.	  

Register	  callback	  to	  the	  method/func5on	  that	  
returns	  the	  current	  5me	  of	  the	  simulator.	  



Programming with FNCS: Time Management 

!   FNCS provides two methods 
for time management. 
! timeStepStart() – Called at the 

beginning of a time step. 
! getNextTime() – Called at the 

end of a time step. 
!   The implementation of these 

methods are provided in 
concrete syncalgorithm 
classes. 

Integrator::timeStepStart(currentTi
me) -> wait for other simulators 
iff synchronization is necessary 
at time step currentTime. 

Integrator::getNextTime(xurrentTim
e, nexTime) -> get the next 
granted time for the simulator. 



Time Management for a 
Time Stepped Simulator 

currentTime = initialTime; 
do{ 

 Integrator::timeStepStart(currentTime); 
 processTimeStep(currentTime); 
 nextTime=getNextTimeStep(); 
 nextTime=Integrator::getNextTime(currentTime, 
  nextTime); 
 currentTime = nextTime; 

}while(currentTime < endTime); 



Time Management for a  
Communication Network Simulator 

while(!empty(eventQ)){ 
  toProcess=getNextEvent(eventQ); 

 currentTime=toProcess.time; 
 processEvent(toProcess); 
 Integrator::timeStepStart(currentTime); 
 if(!empty(eventQ)) 
   nextTime=getNextEvent(eventQ).time; 
 else 
   nextTime=Infinity; 
 nextTime=Integrator::getNextTime(currentTime, nextTime); 

} 

getNextTime()	  should	  be	  called	  
before	  processing	  an	  event.	  



Time Management and  
Inter-Simulator Message Delivery 

!   Message exchange is designed 
to deliver messages without 
incurring delays (due to 
synchronization). 

!   Message delivery is realized 
during synchronization. 
!   Messages are buffered until the 

synchronization is completed. 
!   The call order of the time 

management functions ensures 
messages are delivered to the 
network simulator on time! 

t t+1 

Sim1 

Network 
Sim. 

t t+1 

S
end all m

essages 
generated at tim

e t 

S
end all m

essages 
that arrive at 

destination on tim
e t+1 

Key: 

Call to function 
timeStepStart() 

Call to 
function 
getNextTime()
. 
Message 
delivery 

Process events from time t to t+1 

Internal 
simulator 
processing. 



Time Management in FNCS:  
Synchronization Algorithms 

!   At the method getNextTime() FNCS calculate a Lower Bound on Time 
Step (LBTS). 

!   LBTS is a time step until which we are sure none of the simulator are 
going to exchange message. 
!   Calculation of LBTS is necessary for consistent delivery of inter-simulator 

messages. 
!   Co-simulations can consists of simulators with different time scales. 

!   LBTS can lower than the next time step of the simulator. 
!   Simulators with the coarser time scales with for simulators with fine time 

scales.  
!   FNCS provides 4 algorithms for time management. 



Time Management in FNCS:  
Conservative Algorithm 

!   LBTS is always set to the 
smallest next time step of 
simulators. 
1.  If there are in transit messages, 

nextTime_i= Δt, Δt is the time-
step of the ith simulator. 

2.  LBTS = Reduce_min(nextTime_i) 
3.  If LBTS < nextTime_i, busy wait. 

!   Networks simulator does not 
participate in calculation of 
LBTS.  

!   Network simulator is always 
synchronized with the smallest 
next time step of the other 
simulators, ensures on-time 
delivery. 

t(sec)	  t	   t+5	  

t(milisec)	  t	   t+1	  

t(nano-‐sec)	  t	  

Sim1	  

Sim2	  

Network	  
Sim	  

Total	  Send:	  1	  
Total	  Received:	  0	  

t(sec)	  t	   t+1	  

t(milisec)	  t	   t+1	  

t(nano-‐sec)	  t	  

Sim1	  

Sim2	  

Network	  
Sim	  

Total	  Send:	  1	  
Total	  Received:	  0	  

Before	  synchroniza5on	  at	  5me	  t	  

t+1	  

A^er	  synchroniza5on	  at	  5me	  t	  

Busy	  Wait	  

Key:	  
Current	  5me	  
in	  the	  
simulator.	  

Next	  5me	  
calculates	  by	  
the	  simulator	  

Next	  5me	  
granted	  for	  the	  
simulator	  

•  Pros:	  	  
–  Does	  not	  require	  addi5onal	  

models	  for	  5me	  
synchroniza5on.	  

–  Does	  not	  delay	  the	  messages	  

•  Cons:	  	  
–  Performance,	  at	  worst	  case	  

needs	  to	  synchronize	  every	  5me	  
step	  of	  Sim2.	  

–  To	  many	  message	  exchanges.	  
–  Suitable	  for	  short-‐5me	  co-‐

simula5ons	  on	  one	  computer.	  



Time Management in FNCS: 
Sleeping Conservative Algorithm 

!   LBTS calculation is same 
as the conservative 
algorithm. 

!   When LBTS < nextTime_i, 
the simulator sleeps 
instead of busy waiting. 
!   Simulator is woken up when 

LBTS == nextTime_i or when 
it receives a message while 
sleeping. 

!   Reduces messages required 
for synchronization, which in 
turn increases performance. 

t(sec)	  t	   t+5	  

t(milisec)	  t	   t+1	  

t(nano-‐sec)	  t	  

Sim1	  

Sim2	  

Network	  
Sim	  

Total	  Send:	  0	  
Total	  Received:	  0	  

t(sec)	  t	   t+5	  

t(milisec)	  t	   t+1	  

t(nano-‐sec)	  t	  

Sim1	  

Sim2	  

Network	  
Sim	  

Total	  Send:	  0	  
Total	  Received:	  0	  

Before	  synchroniza5on	  at	  5me	  t	  

t+1	  

A^er	  synchroniza5on	  at	  5me	  t	  

Sleep	  

Key:	  
Current	  5me	  
in	  the	  
simulator.	  

Next	  5me	  
calculates	  by	  
the	  simulator	  

Next	  5me	  
granted	  for	  the	  
simulator	  

•  Pros:	  	  
–  Does	  not	  require	  addi5onal	  

models	  for	  5me	  
synchroniza5on.	  

–  Reduces	  number	  of	  messages	  
required	  for	  simulators.	  

–  Does	  not	  delay	  the	  messages	  

•  Cons:	  	  
–  Performance,	  at	  worst	  case	  

needs	  to	  synchronize	  every	  5me	  
step	  of	  Sim2.	  

–  Suitable	  for	  short-‐5me	  co-‐
simula5ons	  on	  mul'ple	  
computers.	  



Time Management in FNCS:  
Speculative Algorithms 

!   A simulator can potentially send a message at nextTime. 
!   Conservative  algorithms: Safe time synchronization choice, synchronize 

at nextTime. (Synchronization is costly!) 
!   Observation: Simulators do not need to send a message at every time 

step! How can we avoid synchronization at every time step  
without delaying message delivery? 

!   Speculative time synchronization algorithm: 
!   Speculate that the simulators will not send messages  

until specTime >> LBTS 
!   Fork, child processes run independently until specTime,  

parents run the conservative algorithm. 
!   Kill the children if they try to send a message before specTime. 
!   Kill the parents if children do not send a message until specTime. 
!   Fork is not costly -> uses copy on write! 
!   Utilize CPU and available memory to increase the performance. 



Time Management in FNCS:  
Speculative Algorithm 

!   The algorithm for calculating the 
LBTS: 
1.  Calculate the number of in-transit 

messages (each simulator sends 
the number of messages sent and 
received). 
1.  If there are in-transit messages 

LBTS is Δt, Δt is the time-step of 
the simulator with the highest time 
scale. 

2.  Else, LBTS is currentTime + 
Δtnext , Δtnext is the minimum next 
time. 

3.  If currentTime + LBTS < specTime 
1.  Fork(), children use specTime as 

LBTS 

2.  If currentTime + LBTS < 
myNextTime then enter a busy wait 
loop 

t(sec)	  t	   t+5	  

t(milisec)	  t	   t+1	  

Sim1	  

Sim2	  

Comm.	  
Sim.	  

Total	  Send:	  0	  
Total	  Received:	  0	  

A^er	  synchroniza5on	  at	  5me	  t,	  conserva5ve	  sync.	  

Busy	  Wait	  

t(nanosec)	  t	   t+1	  

t(sec)	  t	   t+5	  

t(milisec)	  t	   t+5	  

Sim1	  

Sim2	  

Comm.	  
Sim.	  

Total	  Send:	  0	  
Total	  Received:	  0	  

A^er	  synchroniza5on	  at	  5me	  t,	  Specula5on:	  next	  sync.	  at	  t+5	  

t(nanosec)	  t	   t+5	  

Execute	  
independently	  

Key:	  
Current	  5me	  in	  
the	  simulator.	  

Next	  5me	  granted	  	  
by	  the	  conserva5ve	  
algorithm.	  

Speculated	  
next	  5me.	  

•  Pros:	  	  
–  Does	  not	  require	  addi5onal	  

models	  for	  5me	  
synchroniza5on.	  

–  Does	  not	  delay	  the	  messages.	  
–  Improves	  the	  performance.	  

•  Cons:	  	  
–  Might	  not	  work	  if	  the	  simulators	  

send	  messages	  frequently.	  	  
–  Threaded	  simulators	  need	  to	  be	  

prepared	  for	  fork.	  
–  Suitable	  for	  long	  co-‐simula5ons	  

where	  simulators	  do	  not	  
exchange	  messages	  frequently.	  



Time Management in FNCS:  
Speculative Re-compute Algorithm 

!   When a child process is launched, it 
needs to register with the FNCS broker. 
!   This is a costly operation! 
!   Reduces performance when simulators 

exchange messages frequently. 

!   Speculative re-compute strategy is 
designed to eliminate registrations. 
!   Child processes are used to 

discover the time steps of message 
exchanges. 

! specTime is always set to infinity. 
!   Child processes execute until one 

them send a message. 
!   The time of message is send to the 

parents, which in turn synchronize 
at this time step. 

t(sec)	  t	   t+5	  

t(milisec)	  t	   t+1	  

Sim1	  

Sim2	  

Comm.	  
Sim.	  

Total	  Send:	  0	  
Total	  Received:	  0	  

A^er	  synchroniza5on	  at	  5me	  t,	  conserva5ve	  sync.	  

Busy	  Wait	  

t(nanosec)	  t	   t+1	  

t(sec)	  t	  

t(milisec)	  t	  

Sim1	  

Sim2	  

Comm.	  
Sim.	  

Total	  Send:	  0	  
Total	  Received:	  0	  

A^er	  synchroniza5on	  at	  5me	  t,	  Specula5on:	  next	  sync.	  at	  t+5	  

t(nanosec)	  t	  

Execute	  
independently	  

Key:	  
Current	  5me	  in	  
the	  simulator.	  

Next	  5me	  granted	  	  
by	  the	  conserva5ve	  
algorithm.	  

Time	  step	  of	  
message	  
exchange	  

t+1000	  

T+1000ms	  will	  be	  
used	  in	  the	  parent	  

processes	  

•  Pros:	  	  
–  Does	  not	  require	  addi5onal	  

models	  for	  5me	  
synchroniza5on.	  

–  Improves	  the	  performance	  for	  
co-‐simula5ons	  with	  simulators	  
exchanging	  messages	  
frequently.	  

•  Cons:	  	  
–  Might	  not	  work	  if	  the	  simulators	  

send	  messages	  frequently.	  
–  Performance	  improvement	  not	  

as	  good	  as	  specula5ve	  algorithm.	  
–  Suitable	  for	  co-‐simula5ons	  where	  

simulators	  exchange	  a	  lot	  of	  
message.	  	  



Time Management in FNCS:  
Sending/Receiving Messages. 

!   The components of a 
simulator that need to 
communicate with other 
simulators need to register 
with FNCS. 

!   Every component is assigned 
an inbox and an outbox. 

!   The component can select to 
be notified when it receives a 
message, or the messages 
can be stored in inbox until it 
reads them. 
!   Notifications require 

components to register a 
callback function 

ObjectCommInterface *interface= 
Integrator::getCommInterface(<na
me_of_the_component>) 

… 
Message *mesg=new 

Message(<from>,<to>,<timestep>,
<data>,<direct_or_network>); 

Interface->send(mesg); 
… 
while(interface->hasMoreMessage()){ 

 Message *rm=interface-
>getNextMessage(); 
 //process rm. 

} 
 

Register	  a	  component	  with	  FNCS	  

Send	  a	  new	  message	  

Get	  buffered	  messages	  



Programming with FNCS 

!   Extension points of FNCS: 
! BufferStrategy: defines how messages are buffered. 
! SynchronizationAlgorithm: FNCS provides 4 synchronization algorithms, 

but users can extend the framework with an algorithm suitable for their 
needs. 

! SpeculationStrategy: FNCS provides synchronization based-on 
speculative execution to speed up co-simulations. Users can extend 
FNCS with strategies describing when to speculate. 

! NetworkInterface: FNCS provides a well-defined interface for co-
simulation inter-process communication. Users can extend interface to 
utilize an inter-process communication library. Currently, ZMQ is 
supported, experimental support for MPI. 



Demand Response/Real-Time Pricing 
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Demand Response/Real-Time Pricing Example 

!   RTP, double-auction, retail market 
!   Market accepts demand and supply bids 
!   Clears on five minute intervals 
!   Designed to also manage capacity constraints at substation 

More  
Comfort 

More 
Savings 

!   Acts as a distributed agent to offer 
bids & respond to clearing prices 

!   Consumer sets a preference for 
“savings” versus “comfort” 

!   Currently being tested as part of 
the AEP gridSMART® ARRA 
Demonstration in Columbus, OH 

!   Residential energy management system 



Pbase	  

Basic Real-Time Price / Double Auction 
Market –  Typical Unconstrained Conditions 

Base	  retail	  	  
price	  based	  on	  
PJM	  5-‐min	  real-‐
6me	  market	  

Unresponsive	  
Loads	  

Q, Load (MW) 

P,
 P

ric
e 

($
/M

W
h)

 

Responsive	  
Loads	  

Demand Curve: 
sorted  (P, Q) 

bids from RTP-
DA customers 

Pclear	  

Qclear	  

Feeder	  
Capacity	  

Varies	  every	  
5-‐min	  

Feeder	  
Supply	  
Curve	  

!   Market clears 
every 5-mins to 
~match AC 
load cycle 

!   Cleared load 
varies with 
demand curve 

!   Clearing price 
is constant at 
base retail 
price 



Basic Real-Time Price / Double Auction 
Market –  Typical Constrained Conditions 

Base	  retail	  	  
price	  based	  on	  
PJM	  5-‐min	  real-‐
6me	  market	  

Unresponsive	  
Loads	  

Q, Load (MW) 

P,
 P

ric
e 

($
/M

W
h)

 

Responsive	  
Loads	  

Demand Curve: 
sorted  (P, Q) 

bids from RTP-
DA customers 

Pclear	  

Qclear	  

Feeder	  
Capacity	  

Feeder	  
Supply	  
Curve	  

Pbase	  

!   Market clears 
every 5-mins 

!   Cleared load is 
constant at 
feeder capacity 

!   Clearing price 
varies to keep 
load at capacity 



Ideal result is… 

!   Decreased wholesale energy costs 
!   Peak demand limited to feeder capacity 

IEEE-13 node system with 900 residential loads simulated in GridLAB-D™ 

www.gridlabd.org	  



But what happens when including 
communication latency? 

!   IEEE-13 node model with 900 
residential loads and controllers 
modeled in GridLAB-D 

 
!   Model was modified to work within 

FNCS framework 

!   An ns-3 communication network 
model was created (radial WIFI) 

 
!   EXTREME communication delays 

(for Wifi) were considered 



But what happens when including 
communication latency? 

!   Excessive communication delays during critical period caused an 
“accounting error” in auction (this was considered in Demo deployment) 

As simulated in GridLAB-D and ns-3 

www.gridlabd.org	  

www.nsnam.org	  



A few comments 

!   These communication concerns were dealt with during the design of 
the demonstration system 
!   However, it was mostly engineering judgment and the timescale of control 

is such that latency is not a major factor 

!   A co-simulation environment can help determine the most economic 
means of deploying smart grid technologies, specifically in terms of 
communication requirements for successful system operations 
!   How much communication infrastructure do I need? 
!   What affect will latency have on my monitoring / control scheme? 

!   This will become more important as 
!   Sampling / control action periods are decreased (real-time control) 
!   Multiple applications are layered over the same communication systems 



Now let’s add a transmission element… 

Pline 

!   Want to be able to integrate 
>2 simulators 
!   ns-3™ 
!   GridLAB-D™ 
!   transmission solver 

!   Example: Wide Area 
Monitoring, Protection, and 
Control (WAMPAC) 

!   Want to limit the power 
flowing through branch34 

!   Use a price “signal” 
broadcasted to a distribution 
circuit to limit demand 

GridLAB-D 

“Controller” 



!   GridLAB-D is posting current 
load to a transmission 
substation 

!   The transmission solver is 
performing power flow 
calculations with updated load 
information 

!   The control object is 
calculating the change in 
price needed 

!   A new price is being 
broadcasted to distributed 
devices in GridLAB-D via ns-3 

Pline 

GridLAB-D 

“Controller” 

What data is being exchanged? 



Relatively simple control design 

!   Simple PI control design  
!   Only used to show how the software works (does not deal with revenue, 

“price as a signal”, regulatory issues, etc.) 

!   Demand response consumers are using the same mechanism as 
previous use case 

!   “Price” is now derived as a function of the system constraints 



Some results 

!   PI controller takes some time 
to learn the necessary price 
adjustment (not well tuned) 
!   In actual application, we 

would take some time to tune 
the parameters 

!   But, we can see the response 
within GridLAB-D 
!   Reduces the demand from 

hour 40 through 46 
!   Price signal is being 

produced in the transmission 
solver (this could be replaced 
with Matpower and LMPs) 

!   Price is broadcasted via ns-3 
(we could look at affects of 
communication delays)  

P
ow

er
 (M

W
) 

Time (hours) 

Reduced demand 
in GridLAB-D 
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Closing remarks 

!   Simple example(s) to demonstrate the simulation environment 
!   Any tool could be replaced with another of “better value” 
!   Complexity of design is up to user 

!   We will continue developing interconnections for further 
experimentation and additional use cases 
!   Exploring interface with GridPACK solvers 
!   Expanding MATPOWER connection 
!   Expanding GridLAB-D connection 
!   Finishing the interface for EnergyPlus 
!   Adding an interface to GridOPTICS 

(for data management and visualization) 
!   Suggestions? 



How to Contribute, Questions 

!   Sources soon to be on GridOPTICS github site. 
! https://github.com/GridOPTICS/FNCS (empty placeholder) 
!   Can use issue tracker right now 
!   Code rollout is underway 

!   Email us developers directly 
! jeff.daily@pnnl.gov, PI 
! jason.fuller@pnnl.gov, co-PI 

July 17, 2014 48 


