
GridPACK™ Toolkit for
Developing Power Grid
Simulations on High Performance
Computing Platforms

Bruce Palmer

GridPACK™ Development Team
Bruce Palmer (PI): Parallel code development
William Perkins: Parallel code development
Yousu Chen: Power grid application development
Shuangshuang Jin: Power grid application development
David Callahan: Data integration
Kevin Glass: Data integration and optimization
Ruisheng Diao: Power grid engineering and model
validation
Stephen Elbert: Optimization and economic modeling
Mallikarjuna Vallem: Synthetic data and model validation
Nathan Tenney: Automatic builds and testing
Kevin Lai: Webpage development
Zhenyu (Henry) Huang: Program management

Why GridPACK™?

The power grid, despite it size and complexity, is still being modeled
primarily using workstations
Serial codes are limited by memory and processor speed and this
limits the size and complexity of existing models
Modeling large systems using small computers involves substantial
aggregation and approximations
Parallel computing can potentially increase memory and computing
power by orders of magnitude, thereby increasing the size and
complexity of power grid models that can be simulated using
computing
Parallel computing is more complex than writing serial code and the
investment costs are relatively high
Parallel software is a rapidly changing field and keeping up with new
developments can be both expensive and time consuming

Objectives

Simplify development of HPC codes for simulating power grid
Create high level abstractions for common programming motifs in
power grid applications
Encapsulate high performance math libraries and make these
available for power grid simulations
Promote reuse of power grid software components in multiple
applications to reduce development and maintenance costs
Incorporate as much communication and indexing calculations as
possible into high level abstractions to reduce application
development complexity
Compartmentalize functionality to reduce maintenance and
development costs

Impact

Access to larger computers with more memory and
processing power
Models containing larger networks and higher levels of
detail can be simulated
Reduced time to solution
Greater capacity for modeling contingencies and
quantifying uncertainty

Contributing to GridPACK™

GridPACK™ is open-source, releases include all source
files
BSD license allows users to incorporate GridPACK™ in
their software, both proprietary and open-source
Development tree will be available via a public server in
the late summer to fall time frame (most likely via GitHub)
Files can be contributed in the meantime by getting in
touch with a member of the development team

GridPACK™ Framework

Core Data Objects

Power Grid
Network

Matrices and
Vectors

Application
Driver

Base Network
Components
• Neighbor Lists
• Matrix Elements

Math and Solver
Module
• PETSc

Mapper

Network Module
• Exchanges
• Partitioning

Task Manager

Import Module
• PTI Formats
• Dictionary

Export Module
• Serial IO
• PTI Formats

GridPACK™ Framework

Configure
Module
• XML

GridPACK™ Applications

Utilities
• Errors
• Profiling

Base Factory
• Network-wide

Operations

Application Factory Application
Components

Y-matrix

Dynamic
Simulation

Powerflow

Schematic Diagram of Network Object

Framework-
defined
interface User-

defined
model

Partitioning of Network

WECC (Western
Electricity
Coordinating
Council) network
partitioned
between 16
processors

Matrix Contributions from Network Components

1 2 3

4

5

6

7
8

12

11

10 9

No matrix
contribution

No matrix
contribution

No matrix
contribution

Distribute Component Contributions and
Eliminate Gaps

Powerflow Jacobian from Mapper
(1 Processor)

16351 bus
WECC
system

Powerflow Jacobian from Mapper
(4 Processor)

16351 bus
WECC
system

Powerflow Jacobian from Mapper
(16 Processor)

16351 bus
WECC
system

Powerflow Code

 1 typdef BaseNetwork<PFBus,PFBranch> PFNetwork;
 2 Communicator world;
 3 shared_ptr<PFNetwork>
 4 network(new PFNetwork(world));
 5
 6 PTI23_parser<PFNetwork> parser(network);
 7 parser.parse("network.raw");
 8 network->partition();
 9
10 PFFactory factory(network);
11 factory.load();
12 factory.setComponents();
13 factory.setExchange();
14
15 network->initBusUpdate();
16 factory.setYBus();
17 factory.setMode(YBus);
18 FullMatrixMap<PFNetwork> mMap(network);
19 shared_ptr<Matrix> Y = mMap.mapToMatrix();
20
21 factory.setSBus();
22 factory.setMode(RHS);
23 BusVectorMap<PFNetwork> vMap(network);
24 shared_ptr<Vector> PQ = vMap.mapToVector();
26 factory.setMode(Jacobian);
27 FullMatrixMap<PFNetwork> jMap(network);
28 shared_ptr<Matrix> J = jMap.mapToMatrix();

29 shared_ptr<Vector> X(PQ->clone());
30
31 double tolerance = 1.0e-6;
32 int max_iteration = 100;
33 ComplexType tol = 2.0*tolerance;
34 LinearSolver solver(*J);
35
36 int iter = 0;
37
38 // Solve matrix equation J*X = PQ
39 solver.solve(*PQ, *X);
40 tol = X->norm2();
41
42 while (real(tol) > tolerance &&
43 iter < max_iteration) {
44 factory.setMode(RHS);
44 vMap.mapToBus(X);
45 network->updateBuses();
46 vMap.mapToVector(PQ);
47 factory.setMode(Jacobian);
48 jMap.mapToMatrix(J);
49 solver.solve(*PQ, *X);
50 tol = X->normInfinity();
51 iter++;
52 }

Performance Results

Applications
Powerflow
Dynamic Simulation
Dynamic Contingency Analysis

Strong Scaling Performance
Fixed problem size, increasing number of processors

Powerflow Scaling for Artificial 777646 Bus
Network

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

0 10 20 30 40 50 60 70

Parsing
Partitioning
Solver
Total

Ti
m

e
(s

ec
on

ds
)

Number of Processors

Dynamic Simulation

0.0

50.0

100.0

150.0

200.0

0 10 20 30 40 50 60 70

Partition
Solver
Multiply
Total

Ti
m

e
(s

ec
on

ds
)

Number of Processors

Simulation of
16351 bus
WECC
network

Dynamic Contingency Analysis

10.0

100.0

1000.0

10000.0

1 10 100 1000

Solve
Multiply
Total

Ti
m

e
(s

ec
on

ds
)

Number of Processors

Simulation of 16
contingencies on
16351 bus
WECC network

2 levels of
parallelism

Conclusions

A flexible framework for developing power grid
applications that run on advanced computer architectures
has been developed
The framework supports most of the basic data structures
and data manipulations common to many power grid
applications
Several power grid applications have been developed
within the framework and show scaling behavior on
multiple processors
Documenation and downloads for GridPACK™ are
available at https://gridpack.org

https://gridpack.org/

Acknowledgments

This work is supported by the U.S. Department of Energy
(DOE) through its Advanced Grid Modeling Program.
Computing resources were provided by Pacific Northwest
National Laboratory through its PNNL Institutional
Computing prorgram

GridPACK™ is available for download at
https://gridpack.org

https://gridpack.org/

	GridPACK™ Toolkit for Developing Power Grid Simulations on High Performance Computing Platforms
	GridPACK™ Development Team
	Why GridPACK™?
	Objectives
	Impact
	Contributing to GridPACK™
	GridPACK™ Framework
	Schematic Diagram of Network Object
	Partitioning of Network
	Matrix Contributions from Network Components�
	Distribute Component Contributions and Eliminate Gaps�
	Powerflow Jacobian from Mapper�(1 Processor)�
	Powerflow Jacobian from Mapper�(4 Processor)
	Powerflow Jacobian from Mapper�(16 Processor)
	Powerflow Code
	Performance Results
	Powerflow Scaling for Artificial 777646 Bus Network�
	Dynamic Simulation
	Dynamic Contingency Analysis
	Conclusions
	Acknowledgments

