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Why GridPACK™? 

The power grid, despite it size and complexity, is still being modeled 
primarily using workstations 
Serial codes are limited by memory and processor speed and this 
limits the size and complexity of existing models 
Modeling large systems using small computers involves substantial 
aggregation and approximations 
Parallel computing can potentially increase memory and computing 
power by orders of magnitude, thereby increasing the size and 
complexity of power grid models that can be simulated using 
computing 
Parallel computing is more complex than writing serial code and the 
investment costs are relatively high 
Parallel software is a rapidly changing field and keeping up with new 
developments can be both expensive and time consuming 



Objectives 

Simplify development of HPC codes for simulating power grid 
Create high level abstractions for common programming motifs in 
power grid applications 
Encapsulate high performance math libraries and make these 
available for power grid simulations 
Promote reuse of power grid software components in multiple 
applications to reduce development and maintenance costs 
Incorporate as much communication and indexing calculations as 
possible into high level abstractions to reduce application 
development complexity 
Compartmentalize functionality to reduce maintenance and 
development costs 



Impact 

Access to larger computers with more memory and 
processing power 
Models containing larger networks and higher levels of 
detail can be simulated 
Reduced time to solution 
Greater capacity for modeling contingencies and 
quantifying uncertainty 
 



Contributing to GridPACK™ 

GridPACK™ is open-source, releases include all source 
files 
BSD license allows users to incorporate GridPACK™ in 
their software, both proprietary and open-source 
Development tree will be available via a public server in 
the late summer to fall time frame (most likely via GitHub) 
Files can be contributed in the meantime by getting in 
touch with a member of the development team 



GridPACK™ Framework 
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Schematic Diagram of Network Object 
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Partitioning of Network 

WECC (Western 
Electricity 
Coordinating 
Council) network 
partitioned 
between 16 
processors 



Matrix Contributions from Network Components 
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Distribute Component Contributions and 
Eliminate Gaps 
 



Powerflow Jacobian from Mapper 
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Powerflow Jacobian from Mapper 
(4 Processor) 
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Powerflow Jacobian from Mapper 
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Powerflow Code 

 1  typdef BaseNetwork<PFBus,PFBranch> PFNetwork; 
 2  Communicator world; 
 3  shared_ptr<PFNetwork> 
 4      network(new PFNetwork(world)); 
 5 
 6  PTI23_parser<PFNetwork> parser(network); 
 7  parser.parse("network.raw"); 
 8  network->partition(); 
 9 
10 PFFactory factory(network); 
11 factory.load(); 
12 factory.setComponents(); 
13 factory.setExchange(); 
14  
15 network->initBusUpdate(); 
16 factory.setYBus(); 
17 factory.setMode(YBus); 
18 FullMatrixMap<PFNetwork> mMap(network); 
19 shared_ptr<Matrix> Y = mMap.mapToMatrix(); 
20 
21 factory.setSBus(); 
22 factory.setMode(RHS); 
23 BusVectorMap<PFNetwork> vMap(network); 
24 shared_ptr<Vector> PQ = vMap.mapToVector(); 
26 factory.setMode(Jacobian); 
27 FullMatrixMap<PFNetwork> jMap(network); 
28 shared_ptr<Matrix> J = jMap.mapToMatrix(); 
 

29 shared_ptr<Vector> X(PQ->clone()); 
30 
31 double tolerance = 1.0e-6; 
32 int max_iteration = 100; 
33 ComplexType tol = 2.0*tolerance; 
34 LinearSolver solver(*J); 
35 
36 int iter = 0; 
37 
38 // Solve matrix equation J*X = PQ 
39 solver.solve(*PQ, *X); 
40 tol = X->norm2(); 
41 
42 while (real(tol) > tolerance && 
43 iter < max_iteration) { 
44   factory.setMode(RHS); 
44   vMap.mapToBus(X); 
45   network->updateBuses(); 
46   vMap.mapToVector(PQ); 
47   factory.setMode(Jacobian); 
48   jMap.mapToMatrix(J); 
49   solver.solve(*PQ, *X); 
50   tol = X->normInfinity(); 
51   iter++; 
52 } 



Performance Results 

Applications 
Powerflow 
Dynamic Simulation 
Dynamic Contingency Analysis 

Strong Scaling Performance 
Fixed problem size, increasing number of processors 



Powerflow Scaling for Artificial 777646 Bus 
Network 
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Dynamic Simulation 
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Dynamic Contingency Analysis 
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Conclusions 

A flexible framework for developing power grid 
applications that run on advanced computer architectures 
has been developed 
The framework supports most of the basic data structures 
and data manipulations common to many power grid 
applications 
Several power grid applications have been developed 
within the framework and show scaling behavior on 
multiple processors 
Documenation and downloads for GridPACK™ are 
available at https://gridpack.org  

https://gridpack.org/
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