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Advanced Grid Modeling Research 
Scope 
This activity will develop the computational and mathematical scientific advancements (for suitable application in 
a large-scale, dynamic, stochastic environment) needed to transform the tools and algorithms that underpin 
electric system planning and operations. In achieving this goal, it will also foster strategic, university-based power 
systems research capabilities.  
 
Accelerate existing functions (faster)  

Fast State Estimation  
N-k Contingency Analysis 
Look ahead dynamic 
simulation 
Financial trans right 

Develop new functions (better) 

Dynamic State Estimation 
N-k-k Contingency Analysis 
Stochastics and UQ 
Multi-scale Modeling  
Hierarchical Decision-Making 
(& Controls) 

Integrated functions  

Operation + Planning + Mkts 
Viz + Controls + Protection 
Transmission + Distribution  
       (+ Generation + Load) 
Electricity + Communications  
       + NG +…. 
 

 

Advanced Math 

Advanced Computation  

Data Actionable 
Information 

Objectives 

• Accelerate performance – enabling faster dynamic 
state estimation and analysis capabilities at a 
timescale consistent with data availability (e.g. sub-
second level for synchrophasors) 

• Enable predictive capability – proactively informing 
operator decision-making to benefit reliability through 
real-time measurements and improved simulations  

• Integrate  model platforms – capturing the 
interactions and interdependencies that allow 
development (and validation) of new control 
techniques, build strong understanding of the delicate 
balance between generation and load, and enable 
dynamic reconfiguration (of previously static assets) 
driven by technical and economic objectives 



Open Source Library – Making Advancements 
Accessible 
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Office of Science / ASCR 

(PETSc, Hypre, SUNDIALS, Minotaur, Math Center, …) 

Advanced Modeling Grid Research 

GridPACK Library 
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Why GridPACK™? 



Why GridPACK™? 

The power grid, despite it size and complexity, is still being modeled 
primarily using workstations 
Serial codes are limited by memory and processor speed and this 
limits the size and complexity of existing models 
Modeling large systems using small computers involves substantial 
aggregation and approximations 
Parallel computing can potentially increase memory and computing 
power by orders of magnitude, thereby increasing the size and 
complexity of power grid models that can be simulated using 
computing 
Parallel computing is more complex than writing serial code and the 
investment costs are relatively high 
Parallel software is a rapidly changing field and keeping up with new 
developments can be both expensive and time consuming 
 



Objectives 

Simplify development of HPC codes for simulating power grid 
Create high level abstractions for common programming motifs in 
power grid applications 
Encapsulate high performance math libraries and make these 
available for power grid simulations 
Promote reuse of power grid software components in multiple 
applications to reduce development and maintenance costs 
Incorporate as much communication and indexing calculations as 
possible into high level abstractions to reduce application 
development complexity 
Compartmentalize functionality to reduce maintenance and 
development costs 



GridPACK™ Framework 

Core Data Objects 

Power Grid 
Network 

Matrices and 
Vectors 

Application 
Driver 

Base Network 
Components 
• Neighbor Lists 
• Matrix Elements 

Math and Solver 
Module 
• PETSc 

Mapper 

Network Module 
• Exchanges 
• Partitioning 

Task Manager 

Import Module 
• PTI Formats 
• Dictionary 

Export Module 
• Serial IO 
• PTI Formats 

GridPACK™ Framework 

Configure 
Module 
• XML 

GridPACK™ Applications 

Utilities 
• Errors 
• Profiling 

Base Factory 
• Network-wide 

Operations 

Application Factory Application 
Components 

Y-matrix 

Dynamic 
Simulation 

Powerflow 



Major GridPACK™ Modules 

Network: Manages the topology, neighbor lists, parallel 
distribution and indexing. Acts as a container for bus and 
branch components 
Bus and Branch components: define the behavior and 
properties of buses and branches in network. These 
components also define the matrices that can be 
generated as part of the simulation 
Factory: Manages interactions between network and the 
components 
Mapper: provides a general mechanism for creating 
distributed matrices and vectors from network 
components 



Major GridPACK™ Modules 

Math: Generic wrapper on top of parallel math libraries 
that provides functionality for creating distributed matrices 
and vectors. Also provides access to linear and non-linear 
solvers 
IO: reads external files to create network and set internal 
control parameters and writes output to files or standard 
out 



Configuration 
File 

Topology File 

Configure 
Module 

Import 
Network 

Network 
Module 

Partition Network 
Object 

Application 
Solver 

Mapper Math 
Module 

Export 
Network 

Output File 

Factory Network 
Object 

Network topology, 
simple fields 

Network topology, 
network components 

Network 
Component 

Application Flow Diagram 



BaseNetwork Class 

Template class that can be created with arbitrary user-
defined types for the buses and branches 

BaseNetwork<MyBus, MyBranch> 

Implements partitioning of network between processors 
Create highly connected sub-networks on each processor 
with minimal connections between processors 

Implements data exchanges between buses and 
branches on different processors 
Manages indexing of network components 



#include “gridpack/network/BaseNetwork.hpp” 
#include “gridpack/applications/myapp/mycomponents.hpp” 
 
typedef gridpack::network::BaseNetwork 
                  <gridpack::myapp::MyBus, 
                   gridpack::myapp::MyBranch> MyNetwork;     
 
boost::shared_ptr<MyNetwork> network(new MyNetwork); 
 
// Create a network object that has the application-specific 
// bus and branch models associated with it. The network will 
// also have DataCollection objects on each bus and branch. 
// At this point, the network is just a container and has no 
// topology or data 

Instantiate a Network 



Parser Module 

Currently, only PTI version 23 format is supported. 
Work is under way to develop a parser based on more 
generic GOSS formats 

#include “gridpack/parser/ParserPTI.hpp” 
     : 
gridpack::parser::PTI23_parser<MyNetwork> parser(network); 
parser.parse(“location_of_PTI_file”); 
 



Network Topology 

Bus 

Branch 



Network Data 
Data Collection 
Objects on 
Buses 

Data Collection 
Objects on 
Branches 



Network Components 

Uninitialized Bus 
Component 
Uninitialized Branch 
Component 



Partition Network 

// Invoke the partition function 
 
network->partition(); 
 
// Network has been properly distributed among 
// processors, ghost buses and ghost branches have been 
// added to the network, and global indices have been 
// set. Local neighbor lists and indices for the ends 
// branches have also been set. Network is almost ready 
// for calculations 



Partitioning the Network 

Process 0 Process 1 



Process 0 Partition 

Process 0 

Ghost Buses 
and 
Branches 



Process 1 Partition 

Process 1 

Ghost Buses 
and 
Branches 



Partitioning of Network 

WECC (Western 
Electricity 
Coordinating 
Council) network 
partitioned 
between 16 
processors 



Network Exchanges 

Bus Exchange 

Branch Exchange 

Process 0 Process 1 



Factories 
Factories are used to manage interactions between the 
network and individual network components 
Factories perform some basic initialization functions 
Factories are designed to set up the system so that it can 
be used in calculations. They guarantee the all bus and 
branch objects are in the correct state for generating the 
matrices and vectors needed for solving the problem 
Factories can be used to change the state network 
components 
A primary motif in factory methods is that they loop over 
all bus and branch objects and invoke methods on them 



Initialize Components 

Use data in Data 
Collections to 
initialize bus and 
branch components 
via the load method 

Data Collections Network Components 



Initialize Network Components 

#include “gridpack/applications/myapp/MyFactory.hpp 
   : 
gridpack::myapp::MyFactory factory(network); 
 
// Initialize components with data from DataCollection 
// objects 
factory.load(); 
 
// Set up internal indices used by mappers to create 
// matrices and vectors and set pointers for 
// neighboring buses and branches 
factory.setComponents(); 
 
// Set up buffers for ghost exchanges 
factory.setExchange(); 
 



Components 

All components are derived from the MatVecInterface 
class and the BaseComponent class 

The MatVecInterface class is used to generate matrices 
and vectors from the network 
A new GenMatVecInterface class is being developed to 
handle problems that are not covered by MatVecInterface 

Bus components are derived from the 
BaseBusComponent class 
Branch components are derived from the 
BaseBranchComponent class 



Component Class Hierarchy 

MatVecInterface 

BaseComponent 

BaseBusComponent BaseBranchComponent 

AppBusComponent AppBranchComponent 



Component Reuse 

MatVecInterface 

BaseComponent 

BaseBusComponent BaseBranchComponent 

Y-Matrix Bus 
Component 

Y-Matrix Branch 
Component 

Powerflow Bus 
Component 

Powerflow Branch 
Component 



BaseComponent 

This class provides a few methods that are needed by all 
network components (bus or branch) 
Provides methods for moving data from DataCollection 
objects to components and sets up buffers used for ghost 
bus and ghost branch exchanges 
Provides a mechanism for changing component behavior 
so that different matrices can be extracted from 
components during different phases of the calculation 
Defines functions used in I/O 



Setting Component Mode (Load Method) 

Build Y-Matrix 

Build Powerflow Jacobian 

Build Powerflow Right Hand Side 



BaseBusComponent 

Provides methods that are needed by all bus component 
implementations 
Keeps track of branches that are attached to the bus and 
buses that are attached via a single branch 
Keeps track of the reference bus 



BaseBranchComponent 

Provides methods that are needed by all branch 
component implementations 
Keeps track of the buses at each end of the branch and 
makes these available to the application 



The MatVecInterface 

Designed to allow the GridPACK™ framework to 
generate distributed matrices and vectors from individual 
bus and branch components 
Buses and branches are responsible for describing their 
individual contribution to matrices and vectors 
Buses and branches are NOT responsible for determining 
location of contribution in matrix or vector and are NOT 
responsible for distributing matrices or vectors 



Diagonal MatVecInterface 

// Return the size of matrix block on the diagonal. 
// Usually implemented on bus components. This function 
// returns false if the component does not contribute 
// anything to the matrix 
 
virtual bool matrixDiagSize(int *isize, 
                            int *jsize) const 
 
// Return the values of the block in row-major order. 
// Return false if component does not contribute to matrix 
 
virtual bool matrixDiagValues(ComplexType *values) 



Off-diagonal MatVecInterface 

// Return the size an off-diagonal matrix block 
// contributed by the component. This function returns 
// false if no values are contributed by component. These 
// functions are usually implemented on branches. The 
// Forward function is called for an ij pair when i 
// corresponds to the “from” bus defining a branch. 
// The Reverse function is called when i corresponds 
// to the “to” bus 
 
virtual bool matrixForwardSize(int *isize, 
                               int *jsize) const 
virtual bool matrixReverseSize(int *isize, 
                               int *jsize) const 
 
// Return the values of off-diagonal matrix block. 
// Values are in row-major order. 
 
virtual bool matrixForwardValues(ComplexType *values) 
virtual bool matrixReverseValues(ComplexType *values) 



Mapper 

Provides a flexible framework for constructing matrices 
and vectors representing power grid equations 
Hide the index transformations and partitioning required 
to create distributed matrices and vectors from application 
developers 
Developers can focus on the contributions to matrices 
and vectors coming from individual network elements 



Mapper 

1 2 3 

4 

5 

6 

7 
8 

12 

11 

10 9 



Matrix Contributions from Components 

1 2 3 

4 

5 

6 

7 
8 

12 

11 

10 9 

No matrix 
contribution 

No matrix 
contribution 

No matrix 
contribution 



Distribute Component Contributions and 
Eliminate Gaps 



Powerflow Jacobian from Mapper 
(1 Processor) 
 

16351 bus 
WECC 
system 



Powerflow Jacobian from Mapper 
(4 Processor) 

16351 bus 
WECC 
system 



Powerflow Jacobian from Mapper 
(16 Processor) 

16351 bus 
WECC 
system 



Mapper Behavior 

The matrix or vector that is produced by a mapper is 
controlled by 

The functions that are implemented in the MatVecInterface 
by the application developer 
The current value of the mode variable. If the application 
needs to create different matrices or vectors based on 
different modes, then separate mappers should be created 
for each mode 
When calling any of the mapper functions, the mode should 
always be set to the same value as the mode that was in  
place when the mapper was created 



Math Module 

The math module is a wrapper on top of a parallel solver 
library. It supports 

Distributed sparse and dense matrices and distributed 
vectors 
Basic manipulations of matrices and vectors, e.g. matrix 
additions, matrix-vector multiplication, scaling of matrices, 
creation of identity matrix, etc. 
Linear solvers that support different algorithms and 
preconditioners for solving the matrix equation Ax=b 
Nonlinear solvers 



Distributed Vector Storage 

Process 0 

Process 1 

Process 2 

Process 3 

Process 4 

Process 5 

Vectors are distributed in contiguous segments between processes 



Basic Vector Operations 

// Basic operations that can be performed on vectors 
void zero(void); 
void fill(const ComplexType &v); 
ComplexType norm1(void) const; // L1 norm 
ComplexType norm2(void) const; // L2 norm (standard) 
void scale(const ComplexType &x); 
void add(const Vector &x, const ComplexType &scale = 1.0); 
void equate(const Vector &x); 
void reciprocal(void); 
 



Distributed Matrix Storage 

Process 0 

Process 1 

Process 2 

Process 3 

Process 4 

Process 5 

Matrices are laid out in row blocks 



Basic Matrix Operations 

// Basic operations that can be performed on matrices 
 
void equate(const Matrix &A); 
void scale(const ComplexType &x); 
void multiplyDiagonal(const Vector &x); 
void add(const Matrix &A); 
void identity(void); 
void zero(void); 
 
// Matrix-Vector operations 
extern Matrix *add(const &A, const &B); 
extern Matrix *transpose(const Matrix &A); 
extern Vector *column(const Matrix &A, const int &cidx); 
extern Vector *diagonal(const Matrix &A); 
extern Matrix *multiply(const Matrix &A, const Matrix &B); 
extern Vector *multiply(const Matrix &A, const Vector &x); 



Linear Solver 
// Solve equation using an instance of a LinearSolver 
 
LinearSolver(const Matrix &A); 
void solve(const Vector &b, Vector &x) const; 
void configure(CursorPtr cursor); 
 
// Most of the solver functionality can be accessed by 
// requesting it in the input deck 
 
<LinearSolver> 
  <PETScOptions> 
    -ksp_view  
    -ksp_type richardson 
    -pc_type lu 
    -pc_factor_mat_solver_package superlu_dist  
    -ksp_max_it 1 
  </PETScOptions> 
</LinearSolver> 



Configure 

Configure is designed to take user input, in the form of an 
XML-based input file, and transfer that information to any 
parts of the code that might need it. Configure is designed 
to handle relatively limited amounts of data, it is not 
designed for handling large data objects like the network. 
Examples of user input include 

Location of network configuration file 
Type of solvers to use 
Solution parameters such as convergence tolerance, 
maximum number of iterations, etc. 
Control parameters for different types of data output 



Input File example 
<?xml version="1.0" encoding="utf-8"?> 
<Configuration> 
  <Powerflow>  
    <networkConfiguration>IEEE14.raw</networkConfiguration> 
    <maxIteration>50</maxIteration> 
    <tolerance>1.0e-6</tolerance>  
    <LinearSolver> 
      <PETScPrefix>nrs</PETScPrefix>  
      <PETScOptions>  
        -ksp_atol 1.0e-08 
        -ksp_rtol 1.0e-12  
        -ksp_monitor  
        -ksp_max_it 50 
        -ksp_view  
      </PETScOptions>  
    </LinearSolver>  
  </Powerflow> 
</Configuration> 



Serial IO 

Works in conjunction with the writeSerial operation in the 
BaseComponent class 
Designed to send output to standard out from buses 
and/or branches 

   11   0.942    -16.250        -         -           -           -  
   12   0.943    -16.176        -         -          16.70        1.70 
   13   0.926    -15.878        -         -          16.10        1.60 
   21   0.964    -12.162        -         -         196.20       19.60 
   23   0.964    -12.162        -         -           0.10        0.10 
   31   0.967    -10.454        -         -          79.20        7.90 
   32   0.967    -10.454        -         -          79.20        7.90 
   41   0.978    -11.654        -         -         106.70       10.70 
   43   0.978    -11.688        -         -           5.60        0.60 
   51   0.937    -16.934        -         -          63.70        6.40 
   52   0.940    -16.426        -         -           -           -  
   61   0.909    -21.810        -         -          23.20        2.30 
   62   0.905    -23.846        -         -          23.40        2.30 
   75   0.923    -18.114        -         -          21.30        2.10 



Serial IO Classes 

// Write serial IO from buses. “len” is the maximum size 
// string that is written. The string “signal” is passed 
// to the writeSerial method in the BaseComponent class. 
// The “write” method will trigger the writeSerial 
// in the base and branch components, the “header” method 
// is a convenience method for writing single strings 
// from the head node 
SerialBusIO(int len, 
            boost::shared_ptr<MyNetwork> network) 
void write(char *signal) 
void header(char *str) 
 
// Write Serial IO from branches 
SerialBranchIO(int len, 
            boost::shared_ptr<MyNetwork> network) 
void write(char *signal) 
void header(char *str) 



Using Serial IO 

SerialBusIO busIO(256,network); 
busIO.header(”    Bus      Voltage             Generation               Load\n”); 
busIO.header(”     #   Mag(pu)  Ang(deg)     P (MW)   Q (MVAr)     P (MW)   Q (MVAr)\n”); 
busIO.header(” -------------------------------------------------------------------\n”); 
busIO.write(); 

Use code fragment 

to produce 
    Bus      Voltage             Generation               Load 
     #   Mag(pu)  Ang(deg)     P (MW)   Q (MVAr)     P (MW)   Q (MVAr)    
 ------------------------------------------------------------------- 
   11   0.942    -16.250        -         -           -           -  
   12   0.943    -16.176        -         -          16.70        1.70 
   13   0.926    -15.878        -         -          16.10        1.60 
   21   0.964    -12.162        -         -         196.20       19.60 
   23   0.964    -12.162        -         -           0.10        0.10 
   31   0.967    -10.454        -         -          79.20        7.90 
   32   0.967    -10.454        -         -          79.20        7.90 
   41   0.978    -11.654        -         -         106.70       10.70 

These lines are 
produced from the 
serialWrite method in 
BaseComponentClass 



serialWrite method 
bool gridpack::myapp::MyBus::serialWrite(char *string, 
  const int bufsize, const char* signal){ 
  sprintf(string,”  %4d%7.3f%12.3f”,getOriginalIndex(), 
          p_volt, p_angle); 
  int len = strlen(string) 
  char *ptr = string + strlen 
  if (p_generator) { 
    sprintf(ptr,”   %f12.3  %f12.3”,p_gen_p, p_gen_q); 
  } else { 
    sprintf(ptr,”           -           -”); 
  } 
  len = strlen(ptr); 
  ptr += len; 
  if (p_load) { 
    sprintf(ptr,”   %f12.3  %f12.3\n”,p_load_p, p_load_q); 
  } else { 
    sprintf(ptr,”           -           -\n”); 
  } 
  return true;  
} 



Powerflow Application Example 

Create elements of Y-matrix and solve powerflow 
equations using a Newton-Raphson procedure. 

Powerflow components: set network parameters and 
evaluate matrix and vector elements 
Powerflow factory: coordinate higher level functions over 
the whole network 
Powerflow application: control program flow and implement 
higher level solver routine 
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Configuration 
File 

Topology File 

Configure 
Module 

Import 
Network 

File 
Name Topology and 

parameters from 
network file  

Network 
Object 

Components 

Network is ready 
for computation 

Partition 

Vector Map 

Matrix Map 

PQ 

Jacobian 

Nonlinear 
Solver 

Solution 

Factory 

Output 

Standard 
Output 

Solver 
parameters 



Powerflow Components 

Create two new classes to represent buses and 
branches, PFBus and PFBranch 

These classes inherit from bus and branch components that 
are used to form the Y-matrix. These components inherit, in 
turn, from the BaseBusComponent and 
BaseBranchComponent.  

Create load methods in to initialize components from 
network configuration file parameters 
Implement functions in MatVecInterface to create Y-
matrix, Jacobian matrix and right-hand-side (PQ) vector 
Set up buffers for data exchanges between processors 
Implement serialWrite method to create output 



Diagonal Y-matrix contribution 

Yii=-ΣjYij 



Example: Evaluate Y-matrix parameters on 
buses 

void gridpack::powerflow::PFBus::setYBus(void) 
{ 
  gridpack::ComplexType ret(0.0,0.0); 
  std::vector<boost::shared_ptr<BaseComponent> > branches; 
  getNeighborBranches(branches); 
  int size = branches.size(); 
  int i; 
  for (i=0; i<size; i++) { 
    gridpack::powerflow::PFBranch *branch 
      = dynamic_cast<gridpack::powerflow::PFBranch*> 
        (branches[i].get()); 
    ret -= branch->getAdmittance(); 
    ret -= branch->getTransformer(this); 
    ret += branch->getShunt(this); 
  } 
  if (p_shunt) { 
    gridpack::ComplexType shunt(p_shunt_gs,p_shunt_bs); 
    ret += shunt; 
  } 
  p_ybusr = real(ret); 
  p_ybusi = imag(ret); 
} 

 

Functions defined 
on branches 

Need to loop over branches attached 
to bus to evaluate bus contributions 
to Y-matrix 

Y-matrix components assigned 
to internal variables 

Loop over branches 

Yii=-ΣjYij 



Powerflow Application 

Define powerflow network using powerflow bus and 
branch classes 
Create powerflow factories and mappers using the 
powerflow networks 

Implement application-specific methods in the powerflow 
factory, as needed 

Set up algebraic equations and create Newton-Raphson 
solver algorithm using linear solvers from math library 



Powerflow Code 

 1  typdef BaseNetwork<PFBus,PFBranch> PFNetwork; 
 2  Communicator world; 
 3  shared_ptr<PFNetwork> 
 4      network(new PFNetwork(world)); 
 5 
 6  PTI23_parser<PFNetwork> parser(network); 
 7  parser.parse("network.raw"); 
 8  network->partition(); 
 9 
10 PFFactory factory(network); 
11 factory.load(); 
12 factory.setComponents(); 
13 factory.setExchange(); 
14  
15 network->initBusUpdate(); 
16 factory.setYBus(); 
17 
18 factory.setSBus(); 
19 factory.setMode(RHS); 
20 BusVectorMap<PFNetwork> vMap(network); 
21 shared_ptr<Vector> PQ = vMap.mapToVector(); 
22 factory.setMode(Jacobian); 
23 FullMatrixMap<PFNetwork> jMap(network); 
24 shared_ptr<Matrix> J = jMap.mapToMatrix(); 
 

25 shared_ptr<Vector> X(PQ->clone()); 
26 
27 double tolerance = 1.0e-6; 
28 int max_iteration = 100; 
29 ComplexType tol = 2.0*tolerance; 
30 LinearSolver solver(*J); 
31 
32 int iter = 0; 
33 
34 // Solve matrix equation J*X = PQ 
35 solver.solve(*PQ, *X); 
36 tol = X->normInfinity(); 
37 
38 while (real(tol) > tolerance && 
39        iter < max_iteration) { 
40   factory.setMode(RHS); 
41   vMap.mapToBus(X); 
42   network->updateBuses(); 
43   vMap.mapToVector(PQ); 
44   factory.setMode(Jacobian); 
45   jMap.mapToMatrix(J); 
46   solver.solve(*PQ, *X); 
47   tol = X->normInfinity(); 
48   iter++; 
49 } 



Powerflow Application: Export Results to 
Standard Output 

   gridpack::serial_io::SerialBusIO<PFNetwork> busIO(128,network); 
 
  busIO.header("\n   Bus Voltages and Phase Angles\n"); 
  busIO.header("\n   Bus Number      Phase Angle"); 
  busIO.header("      Voltage Magnitude\n"); 
 
  busIO.write(); 

   Bus Voltages and Phase Angles 
 
   Bus Number      Phase Angle      Voltage Magnitude  
          1          0.000000             1.060000 
          2         -4.982589             1.045000 
          3        -12.725100             1.010000 
          4        -10.312901             1.017671 
          5         -8.773854             1.019514 
          6        -14.220946             1.070000 
          7        -13.359627             1.061520 
          8        -13.359627             1.090000 
          9        -14.938521             1.055932 
         10        -15.097288             1.050985 
         11        -14.790622             1.056907 
         12        -15.075585             1.055189 
         13        -15.156276             1.050382 
         14        -16.033645             1.035530 

Write header 

Write data from buses 



Performance Results 

Applications 
Powerflow 
Dynamic Simulation 
Dynamic Contingency Analysis 

Strong Scaling Performance 
Fixed problem size, increasing number of processors 



Powerflow Scaling for Artificial 777646 Bus 
Network 
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Shared Memory Effects 

Solver 
performance 
for 
powerflow 
calculation 
on artificial 
777646 bus 
network  
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Processor Configurations and Shared 
Memory 

SMP Node 

Processing Core 

Shared Memory 
16 processors 
on 2,4,8 nodes 



Shared Memory Effects 

Less 
memory 
per 
processor 

More internode 
communication 
over network 
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Dynamic Simulation 
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Dynamic Contingency Analysis 
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