
GridPACK™ Framework for
Developing Power Grid
Applications for HPC Platforms

Bruce Palmer

More extensive tutorials and documentation
are available at https://gridpack.org

https://gridpack.org/

GridPACK™ Development Team
Bruce Palmer (PI): Parallel code development
William Perkins: Parallel code development
Yousu Chen: Power grid application development
Shuangshuang Jin: Power grid application development
David Callahan: Data integration
Kevin Glass: Data integration and optimization
Ruisheng Diao: Power grid engineering and model
validation
Stephen Elbert: Optimization and economic modeling
Mallikarjuna Vallem: Synthetic data and model validation
Nathan Tenney: Automatic builds and testing
Kevin Lai: Webpage development
Zhenyu (Henry) Huang: Program management

Advanced Grid Modeling Research
Scope
This activity will develop the computational and mathematical scientific advancements (for suitable application in
a large-scale, dynamic, stochastic environment) needed to transform the tools and algorithms that underpin
electric system planning and operations. In achieving this goal, it will also foster strategic, university-based power
systems research capabilities.

Accelerate existing functions (faster)

Fast State Estimation
N-k Contingency Analysis
Look ahead dynamic
simulation
Financial trans right

Develop new functions (better)

Dynamic State Estimation
N-k-k Contingency Analysis
Stochastics and UQ
Multi-scale Modeling
Hierarchical Decision-Making
(& Controls)

Integrated functions

Operation + Planning + Mkts
Viz + Controls + Protection
Transmission + Distribution
 (+ Generation + Load)
Electricity + Communications
 + NG +….

Advanced Math

Advanced Computation

Data Actionable
Information

Objectives

• Accelerate performance – enabling faster dynamic
state estimation and analysis capabilities at a
timescale consistent with data availability (e.g. sub-
second level for synchrophasors)

• Enable predictive capability – proactively informing
operator decision-making to benefit reliability through
real-time measurements and improved simulations

• Integrate model platforms – capturing the
interactions and interdependencies that allow
development (and validation) of new control
techniques, build strong understanding of the delicate
balance between generation and load, and enable
dynamic reconfiguration (of previously static assets)
driven by technical and economic objectives

Open Source Library – Making Advancements
Accessible

O
th

er
 O

E
Pr

og
ra

m
s

(e

.g
. G

rid
LA

B-
D)

EE
RE

(e

.g
. r

en
ew

ab
le

 in
t)

Office of Science / ASCR

(PETSc, Hypre, SUNDIALS, Minotaur, Math Center, …)

Advanced Modeling Grid Research

GridPACK Library

Co
m

m
er

ci
al

iz
at

io
n/

U
se

rs

In
te

rc
on

ne
ct

io
n

M
od

el

Ad
va

nc
ed

 O
pe

ra
tio

n

La
rg

e-
sc

al
e

Pl
an

ni
ng

Ad
va

nc
ed

 O
pt

im
iza

tio
n

St
oc

ha
st

ic
 A

na
ly

sis

Dy
na

m
ic

 P
ar

ad
ig

m

O
th

er
 m

od
/s

im
 e

ffo
rt

s

AR
PA

-E
, N

SF
, …

.

Ap
pl

ic
at

io
ns

Why GridPACK™?

Why GridPACK™?

The power grid, despite it size and complexity, is still being modeled
primarily using workstations
Serial codes are limited by memory and processor speed and this
limits the size and complexity of existing models
Modeling large systems using small computers involves substantial
aggregation and approximations
Parallel computing can potentially increase memory and computing
power by orders of magnitude, thereby increasing the size and
complexity of power grid models that can be simulated using
computing
Parallel computing is more complex than writing serial code and the
investment costs are relatively high
Parallel software is a rapidly changing field and keeping up with new
developments can be both expensive and time consuming

Objectives

Simplify development of HPC codes for simulating power grid
Create high level abstractions for common programming motifs in
power grid applications
Encapsulate high performance math libraries and make these
available for power grid simulations
Promote reuse of power grid software components in multiple
applications to reduce development and maintenance costs
Incorporate as much communication and indexing calculations as
possible into high level abstractions to reduce application
development complexity
Compartmentalize functionality to reduce maintenance and
development costs

GridPACK™ Framework

Core Data Objects

Power Grid
Network

Matrices and
Vectors

Application
Driver

Base Network
Components
• Neighbor Lists
• Matrix Elements

Math and Solver
Module
• PETSc

Mapper

Network Module
• Exchanges
• Partitioning

Task Manager

Import Module
• PTI Formats
• Dictionary

Export Module
• Serial IO
• PTI Formats

GridPACK™ Framework

Configure
Module
• XML

GridPACK™ Applications

Utilities
• Errors
• Profiling

Base Factory
• Network-wide

Operations

Application Factory Application
Components

Y-matrix

Dynamic
Simulation

Powerflow

Major GridPACK™ Modules

Network: Manages the topology, neighbor lists, parallel
distribution and indexing. Acts as a container for bus and
branch components
Bus and Branch components: define the behavior and
properties of buses and branches in network. These
components also define the matrices that can be
generated as part of the simulation
Factory: Manages interactions between network and the
components
Mapper: provides a general mechanism for creating
distributed matrices and vectors from network
components

Major GridPACK™ Modules

Math: Generic wrapper on top of parallel math libraries
that provides functionality for creating distributed matrices
and vectors. Also provides access to linear and non-linear
solvers
IO: reads external files to create network and set internal
control parameters and writes output to files or standard
out

Configuration
File

Topology File

Configure
Module

Import
Network

Network
Module

Partition Network
Object

Application
Solver

Mapper Math
Module

Export
Network

Output File

Factory Network
Object

Network topology,
simple fields

Network topology,
network components

Network
Component

Application Flow Diagram

BaseNetwork Class

Template class that can be created with arbitrary user-
defined types for the buses and branches

BaseNetwork<MyBus, MyBranch>

Implements partitioning of network between processors
Create highly connected sub-networks on each processor
with minimal connections between processors

Implements data exchanges between buses and
branches on different processors
Manages indexing of network components

#include “gridpack/network/BaseNetwork.hpp”
#include “gridpack/applications/myapp/mycomponents.hpp”

typedef gridpack::network::BaseNetwork
 <gridpack::myapp::MyBus,
 gridpack::myapp::MyBranch> MyNetwork;

boost::shared_ptr<MyNetwork> network(new MyNetwork);

// Create a network object that has the application-specific
// bus and branch models associated with it. The network will
// also have DataCollection objects on each bus and branch.
// At this point, the network is just a container and has no
// topology or data

Instantiate a Network

Parser Module

Currently, only PTI version 23 format is supported.
Work is under way to develop a parser based on more
generic GOSS formats

#include “gridpack/parser/ParserPTI.hpp”
 :
gridpack::parser::PTI23_parser<MyNetwork> parser(network);
parser.parse(“location_of_PTI_file”);

Network Topology

Bus

Branch

Network Data
Data Collection
Objects on
Buses

Data Collection
Objects on
Branches

Network Components

Uninitialized Bus
Component
Uninitialized Branch
Component

Partition Network

// Invoke the partition function

network->partition();

// Network has been properly distributed among
// processors, ghost buses and ghost branches have been
// added to the network, and global indices have been
// set. Local neighbor lists and indices for the ends
// branches have also been set. Network is almost ready
// for calculations

Partitioning the Network

Process 0 Process 1

Process 0 Partition

Process 0

Ghost Buses
and
Branches

Process 1 Partition

Process 1

Ghost Buses
and
Branches

Partitioning of Network

WECC (Western
Electricity
Coordinating
Council) network
partitioned
between 16
processors

Network Exchanges

Bus Exchange

Branch Exchange

Process 0 Process 1

Factories
Factories are used to manage interactions between the
network and individual network components
Factories perform some basic initialization functions
Factories are designed to set up the system so that it can
be used in calculations. They guarantee the all bus and
branch objects are in the correct state for generating the
matrices and vectors needed for solving the problem
Factories can be used to change the state network
components
A primary motif in factory methods is that they loop over
all bus and branch objects and invoke methods on them

Initialize Components

Use data in Data
Collections to
initialize bus and
branch components
via the load method

Data Collections Network Components

Initialize Network Components

#include “gridpack/applications/myapp/MyFactory.hpp
 :
gridpack::myapp::MyFactory factory(network);

// Initialize components with data from DataCollection
// objects
factory.load();

// Set up internal indices used by mappers to create
// matrices and vectors and set pointers for
// neighboring buses and branches
factory.setComponents();

// Set up buffers for ghost exchanges
factory.setExchange();

Components

All components are derived from the MatVecInterface
class and the BaseComponent class

The MatVecInterface class is used to generate matrices
and vectors from the network
A new GenMatVecInterface class is being developed to
handle problems that are not covered by MatVecInterface

Bus components are derived from the
BaseBusComponent class
Branch components are derived from the
BaseBranchComponent class

Component Class Hierarchy

MatVecInterface

BaseComponent

BaseBusComponent BaseBranchComponent

AppBusComponent AppBranchComponent

Component Reuse

MatVecInterface

BaseComponent

BaseBusComponent BaseBranchComponent

Y-Matrix Bus
Component

Y-Matrix Branch
Component

Powerflow Bus
Component

Powerflow Branch
Component

BaseComponent

This class provides a few methods that are needed by all
network components (bus or branch)
Provides methods for moving data from DataCollection
objects to components and sets up buffers used for ghost
bus and ghost branch exchanges
Provides a mechanism for changing component behavior
so that different matrices can be extracted from
components during different phases of the calculation
Defines functions used in I/O

Setting Component Mode (Load Method)

Build Y-Matrix

Build Powerflow Jacobian

Build Powerflow Right Hand Side

BaseBusComponent

Provides methods that are needed by all bus component
implementations
Keeps track of branches that are attached to the bus and
buses that are attached via a single branch
Keeps track of the reference bus

BaseBranchComponent

Provides methods that are needed by all branch
component implementations
Keeps track of the buses at each end of the branch and
makes these available to the application

The MatVecInterface

Designed to allow the GridPACK™ framework to
generate distributed matrices and vectors from individual
bus and branch components
Buses and branches are responsible for describing their
individual contribution to matrices and vectors
Buses and branches are NOT responsible for determining
location of contribution in matrix or vector and are NOT
responsible for distributing matrices or vectors

Diagonal MatVecInterface

// Return the size of matrix block on the diagonal.
// Usually implemented on bus components. This function
// returns false if the component does not contribute
// anything to the matrix

virtual bool matrixDiagSize(int *isize,
 int *jsize) const

// Return the values of the block in row-major order.
// Return false if component does not contribute to matrix

virtual bool matrixDiagValues(ComplexType *values)

Off-diagonal MatVecInterface

// Return the size an off-diagonal matrix block
// contributed by the component. This function returns
// false if no values are contributed by component. These
// functions are usually implemented on branches. The
// Forward function is called for an ij pair when i
// corresponds to the “from” bus defining a branch.
// The Reverse function is called when i corresponds
// to the “to” bus

virtual bool matrixForwardSize(int *isize,
 int *jsize) const
virtual bool matrixReverseSize(int *isize,
 int *jsize) const

// Return the values of off-diagonal matrix block.
// Values are in row-major order.

virtual bool matrixForwardValues(ComplexType *values)
virtual bool matrixReverseValues(ComplexType *values)

Mapper

Provides a flexible framework for constructing matrices
and vectors representing power grid equations
Hide the index transformations and partitioning required
to create distributed matrices and vectors from application
developers
Developers can focus on the contributions to matrices
and vectors coming from individual network elements

Mapper

1 2 3

4

5

6

7
8

12

11

10 9

Matrix Contributions from Components

1 2 3

4

5

6

7
8

12

11

10 9

No matrix
contribution

No matrix
contribution

No matrix
contribution

Distribute Component Contributions and
Eliminate Gaps

Powerflow Jacobian from Mapper
(1 Processor)

16351 bus
WECC
system

Powerflow Jacobian from Mapper
(4 Processor)

16351 bus
WECC
system

Powerflow Jacobian from Mapper
(16 Processor)

16351 bus
WECC
system

Mapper Behavior

The matrix or vector that is produced by a mapper is
controlled by

The functions that are implemented in the MatVecInterface
by the application developer
The current value of the mode variable. If the application
needs to create different matrices or vectors based on
different modes, then separate mappers should be created
for each mode
When calling any of the mapper functions, the mode should
always be set to the same value as the mode that was in
place when the mapper was created

Math Module

The math module is a wrapper on top of a parallel solver
library. It supports

Distributed sparse and dense matrices and distributed
vectors
Basic manipulations of matrices and vectors, e.g. matrix
additions, matrix-vector multiplication, scaling of matrices,
creation of identity matrix, etc.
Linear solvers that support different algorithms and
preconditioners for solving the matrix equation Ax=b
Nonlinear solvers

Distributed Vector Storage

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Vectors are distributed in contiguous segments between processes

Basic Vector Operations

// Basic operations that can be performed on vectors
void zero(void);
void fill(const ComplexType &v);
ComplexType norm1(void) const; // L1 norm
ComplexType norm2(void) const; // L2 norm (standard)
void scale(const ComplexType &x);
void add(const Vector &x, const ComplexType &scale = 1.0);
void equate(const Vector &x);
void reciprocal(void);

Distributed Matrix Storage

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Matrices are laid out in row blocks

Basic Matrix Operations

// Basic operations that can be performed on matrices

void equate(const Matrix &A);
void scale(const ComplexType &x);
void multiplyDiagonal(const Vector &x);
void add(const Matrix &A);
void identity(void);
void zero(void);

// Matrix-Vector operations
extern Matrix *add(const &A, const &B);
extern Matrix *transpose(const Matrix &A);
extern Vector *column(const Matrix &A, const int &cidx);
extern Vector *diagonal(const Matrix &A);
extern Matrix *multiply(const Matrix &A, const Matrix &B);
extern Vector *multiply(const Matrix &A, const Vector &x);

Linear Solver
// Solve equation using an instance of a LinearSolver

LinearSolver(const Matrix &A);
void solve(const Vector &b, Vector &x) const;
void configure(CursorPtr cursor);

// Most of the solver functionality can be accessed by
// requesting it in the input deck

<LinearSolver>
 <PETScOptions>
 -ksp_view
 -ksp_type richardson
 -pc_type lu
 -pc_factor_mat_solver_package superlu_dist
 -ksp_max_it 1
 </PETScOptions>
</LinearSolver>

Configure

Configure is designed to take user input, in the form of an
XML-based input file, and transfer that information to any
parts of the code that might need it. Configure is designed
to handle relatively limited amounts of data, it is not
designed for handling large data objects like the network.
Examples of user input include

Location of network configuration file
Type of solvers to use
Solution parameters such as convergence tolerance,
maximum number of iterations, etc.
Control parameters for different types of data output

Input File example
<?xml version="1.0" encoding="utf-8"?>
<Configuration>
 <Powerflow>
 <networkConfiguration>IEEE14.raw</networkConfiguration>
 <maxIteration>50</maxIteration>
 <tolerance>1.0e-6</tolerance>
 <LinearSolver>
 <PETScPrefix>nrs</PETScPrefix>
 <PETScOptions>
 -ksp_atol 1.0e-08
 -ksp_rtol 1.0e-12
 -ksp_monitor
 -ksp_max_it 50
 -ksp_view
 </PETScOptions>
 </LinearSolver>
 </Powerflow>
</Configuration>

Serial IO

Works in conjunction with the writeSerial operation in the
BaseComponent class
Designed to send output to standard out from buses
and/or branches

 11 0.942 -16.250 - - - -
 12 0.943 -16.176 - - 16.70 1.70
 13 0.926 -15.878 - - 16.10 1.60
 21 0.964 -12.162 - - 196.20 19.60
 23 0.964 -12.162 - - 0.10 0.10
 31 0.967 -10.454 - - 79.20 7.90
 32 0.967 -10.454 - - 79.20 7.90
 41 0.978 -11.654 - - 106.70 10.70
 43 0.978 -11.688 - - 5.60 0.60
 51 0.937 -16.934 - - 63.70 6.40
 52 0.940 -16.426 - - - -
 61 0.909 -21.810 - - 23.20 2.30
 62 0.905 -23.846 - - 23.40 2.30
 75 0.923 -18.114 - - 21.30 2.10

Serial IO Classes

// Write serial IO from buses. “len” is the maximum size
// string that is written. The string “signal” is passed
// to the writeSerial method in the BaseComponent class.
// The “write” method will trigger the writeSerial
// in the base and branch components, the “header” method
// is a convenience method for writing single strings
// from the head node
SerialBusIO(int len,
 boost::shared_ptr<MyNetwork> network)
void write(char *signal)
void header(char *str)

// Write Serial IO from branches
SerialBranchIO(int len,
 boost::shared_ptr<MyNetwork> network)
void write(char *signal)
void header(char *str)

Using Serial IO

SerialBusIO busIO(256,network);
busIO.header(” Bus Voltage Generation Load\n”);
busIO.header(” # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)\n”);
busIO.header(” ---\n”);
busIO.write();

Use code fragment

to produce
 Bus Voltage Generation Load
 # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)

 11 0.942 -16.250 - - - -
 12 0.943 -16.176 - - 16.70 1.70
 13 0.926 -15.878 - - 16.10 1.60
 21 0.964 -12.162 - - 196.20 19.60
 23 0.964 -12.162 - - 0.10 0.10
 31 0.967 -10.454 - - 79.20 7.90
 32 0.967 -10.454 - - 79.20 7.90
 41 0.978 -11.654 - - 106.70 10.70

These lines are
produced from the
serialWrite method in
BaseComponentClass

serialWrite method
bool gridpack::myapp::MyBus::serialWrite(char *string,
 const int bufsize, const char* signal){
 sprintf(string,” %4d%7.3f%12.3f”,getOriginalIndex(),
 p_volt, p_angle);
 int len = strlen(string)
 char *ptr = string + strlen
 if (p_generator) {
 sprintf(ptr,” %f12.3 %f12.3”,p_gen_p, p_gen_q);
 } else {
 sprintf(ptr,” - -”);
 }
 len = strlen(ptr);
 ptr += len;
 if (p_load) {
 sprintf(ptr,” %f12.3 %f12.3\n”,p_load_p, p_load_q);
 } else {
 sprintf(ptr,” - -\n”);
 }
 return true;
}

Powerflow Application Example

Create elements of Y-matrix and solve powerflow
equations using a Newton-Raphson procedure.

Powerflow components: set network parameters and
evaluate matrix and vector elements
Powerflow factory: coordinate higher level functions over
the whole network
Powerflow application: control program flow and implement
higher level solver routine

September 22, 2014 59

Configuration
File

Topology File

Configure
Module

Import
Network

File
Name Topology and

parameters from
network file

Network
Object

Components

Network is ready
for computation

Partition

Vector Map

Matrix Map

PQ

Jacobian

Nonlinear
Solver

Solution

Factory

Output

Standard
Output

Solver
parameters

Powerflow Components

Create two new classes to represent buses and
branches, PFBus and PFBranch

These classes inherit from bus and branch components that
are used to form the Y-matrix. These components inherit, in
turn, from the BaseBusComponent and
BaseBranchComponent.

Create load methods in to initialize components from
network configuration file parameters
Implement functions in MatVecInterface to create Y-
matrix, Jacobian matrix and right-hand-side (PQ) vector
Set up buffers for data exchanges between processors
Implement serialWrite method to create output

Diagonal Y-matrix contribution

Yii=-ΣjYij

Example: Evaluate Y-matrix parameters on
buses

void gridpack::powerflow::PFBus::setYBus(void)
{
 gridpack::ComplexType ret(0.0,0.0);
 std::vector<boost::shared_ptr<BaseComponent> > branches;
 getNeighborBranches(branches);
 int size = branches.size();
 int i;
 for (i=0; i<size; i++) {
 gridpack::powerflow::PFBranch *branch
 = dynamic_cast<gridpack::powerflow::PFBranch*>
 (branches[i].get());
 ret -= branch->getAdmittance();
 ret -= branch->getTransformer(this);
 ret += branch->getShunt(this);
 }
 if (p_shunt) {
 gridpack::ComplexType shunt(p_shunt_gs,p_shunt_bs);
 ret += shunt;
 }
 p_ybusr = real(ret);
 p_ybusi = imag(ret);
}

Functions defined
on branches

Need to loop over branches attached
to bus to evaluate bus contributions
to Y-matrix

Y-matrix components assigned
to internal variables

Loop over branches

Yii=-ΣjYij

Powerflow Application

Define powerflow network using powerflow bus and
branch classes
Create powerflow factories and mappers using the
powerflow networks

Implement application-specific methods in the powerflow
factory, as needed

Set up algebraic equations and create Newton-Raphson
solver algorithm using linear solvers from math library

Powerflow Code

 1 typdef BaseNetwork<PFBus,PFBranch> PFNetwork;
 2 Communicator world;
 3 shared_ptr<PFNetwork>
 4 network(new PFNetwork(world));
 5
 6 PTI23_parser<PFNetwork> parser(network);
 7 parser.parse("network.raw");
 8 network->partition();
 9
10 PFFactory factory(network);
11 factory.load();
12 factory.setComponents();
13 factory.setExchange();
14
15 network->initBusUpdate();
16 factory.setYBus();
17
18 factory.setSBus();
19 factory.setMode(RHS);
20 BusVectorMap<PFNetwork> vMap(network);
21 shared_ptr<Vector> PQ = vMap.mapToVector();
22 factory.setMode(Jacobian);
23 FullMatrixMap<PFNetwork> jMap(network);
24 shared_ptr<Matrix> J = jMap.mapToMatrix();

25 shared_ptr<Vector> X(PQ->clone());
26
27 double tolerance = 1.0e-6;
28 int max_iteration = 100;
29 ComplexType tol = 2.0*tolerance;
30 LinearSolver solver(*J);
31
32 int iter = 0;
33
34 // Solve matrix equation J*X = PQ
35 solver.solve(*PQ, *X);
36 tol = X->normInfinity();
37
38 while (real(tol) > tolerance &&
39 iter < max_iteration) {
40 factory.setMode(RHS);
41 vMap.mapToBus(X);
42 network->updateBuses();
43 vMap.mapToVector(PQ);
44 factory.setMode(Jacobian);
45 jMap.mapToMatrix(J);
46 solver.solve(*PQ, *X);
47 tol = X->normInfinity();
48 iter++;
49 }

Powerflow Application: Export Results to
Standard Output

 gridpack::serial_io::SerialBusIO<PFNetwork> busIO(128,network);

 busIO.header("\n Bus Voltages and Phase Angles\n");
 busIO.header("\n Bus Number Phase Angle");
 busIO.header(" Voltage Magnitude\n");

 busIO.write();

 Bus Voltages and Phase Angles

 Bus Number Phase Angle Voltage Magnitude
 1 0.000000 1.060000
 2 -4.982589 1.045000
 3 -12.725100 1.010000
 4 -10.312901 1.017671
 5 -8.773854 1.019514
 6 -14.220946 1.070000
 7 -13.359627 1.061520
 8 -13.359627 1.090000
 9 -14.938521 1.055932
 10 -15.097288 1.050985
 11 -14.790622 1.056907
 12 -15.075585 1.055189
 13 -15.156276 1.050382
 14 -16.033645 1.035530

Write header

Write data from buses

Performance Results

Applications
Powerflow
Dynamic Simulation
Dynamic Contingency Analysis

Strong Scaling Performance
Fixed problem size, increasing number of processors

Powerflow Scaling for Artificial 777646 Bus
Network

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

0 10 20 30 40 50 60 70

Parsing
Partitioning
Solver
Total

Ti
m

e
(s

ec
on

ds
)

Number of Processors

Shared Memory Effects

Solver
performance
for
powerflow
calculation
on artificial
777646 bus
network

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1 2 3 4 5 6 7 8 9

8 Processors
16 Processors
32 Processors

So
lv

er
 T

im
e

(s
ec

on
ds

)

Number of SMP Nodes

Processor Configurations and Shared
Memory

SMP Node

Processing Core

Shared Memory
16 processors
on 2,4,8 nodes

Shared Memory Effects

Less
memory
per
processor

More internode
communication
over network

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

0 0.2 0.4 0.6 0.8 1 1.2

8 Processors
16 Processors
32 Processors
64 Processors

So
lv

er
 T

im
e

(s
ec

on
ds

)

Shared Memory Ratio (N/P)

Dynamic Simulation

0.0

50.0

100.0

150.0

200.0

0 10 20 30 40 50 60 70

Partition
Solver
Multiply
Total

Ti
m

e
(s

ec
on

ds
)

Number of Processors

Simulation of
16351 bus
WECC
network

Subtasks on Processor Groups

World Group

Parallel tasks running on subgroups

Multiple Levels of Parallelism

8 tasks, 4 processors

8 processors

16 processors (2
levels of parallelism)

Dynamic Contingency Analysis

10.0

100.0

1000.0

10000.0

1 10 100 1000

Solve
Multiply
Total

Ti
m

e
(s

ec
on

ds
)

Number of Processors

Simulation of 16
contingencies on
16351 bus
WECC network

2 levels of
parallelism

Acknowledgments

This work is supported by the U.S. Department of Energy
(DOE) through its Advanced Grid Modeling Program.
Computing resources were provided by Pacific Northwest
National Laboratory through its PNNL Institutional
Computing prorgram

GridPACK™ is available for download at
https://gridpack.org

https://gridpack.org/

	GridPACK™ Framework for Developing Power Grid Applications for HPC Platforms
	Slide Number 2
	GridPACK™ Development Team
	Advanced Grid Modeling Research
	Open Source Library – Making Advancements Accessible
	Why GridPACK™?
	Why GridPACK™?
	Objectives
	GridPACK™ Framework
	Major GridPACK™ Modules
	Major GridPACK™ Modules
	Application Flow Diagram
	BaseNetwork Class
	Instantiate a Network
	Parser Module
	Network Topology
	Network Data
	Network Components
	Partition Network
	Partitioning the Network
	Process 0 Partition
	Process 1 Partition
	Partitioning of Network
	Network Exchanges
	Factories
	Initialize Components
	Initialize Network Components
	Components
	Component Class Hierarchy
	Component Reuse
	BaseComponent
	Setting Component Mode (Load Method)
	BaseBusComponent
	BaseBranchComponent
	The MatVecInterface
	Diagonal MatVecInterface
	Off-diagonal MatVecInterface
	Mapper
	Mapper
	Matrix Contributions from Components
	Distribute Component Contributions and Eliminate Gaps
	Powerflow Jacobian from Mapper�(1 Processor)�
	Powerflow Jacobian from Mapper�(4 Processor)
	Powerflow Jacobian from Mapper�(16 Processor)
	Mapper Behavior
	Math Module
	Distributed Vector Storage
	Basic Vector Operations
	Distributed Matrix Storage
	Basic Matrix Operations
	Linear Solver
	Configure
	Input File example
	Serial IO
	Serial IO Classes
	Using Serial IO
	serialWrite method
	Powerflow Application Example
	Slide Number 59
	Powerflow Components
	Diagonal Y-matrix contribution
	Example: Evaluate Y-matrix parameters on buses
	Powerflow Application
	Powerflow Code
	Powerflow Application: Export Results to Standard Output
	Performance Results
	Powerflow Scaling for Artificial 777646 Bus Network�
	Shared Memory Effects
	Processor Configurations and Shared Memory
	Shared Memory Effects
	Dynamic Simulation
	Subtasks on Processor Groups
	Multiple Levels of Parallelism
	Dynamic Contingency Analysis
	Acknowledgments

