
How to Leverage
GOSS: GridOPTICS Software System
in a Research Environment

A Novel Software Framework for Integrating Power Grid Data Storage,
Management and Analysis

3rd Workshop on Next-Generation Analytics for the Future Power Grid
July 16-18, 2014

Protected Information | Proprietary Information

Overview

GOSS is a middleware architecture designed as a prototype future
data analytics and integration platform
https://github.com/GridOPTICS
What does that mean?

Supports heterogeneity – ease of integration with new/existing power grid
applications developed in different languages
Data source abstraction – separates data sources from applications and
provides a unified application programming interface (API) for access
Rapid development – Quickly make new data/events available to other
applications integrated with GOSS
Real-time – subscription to streaming data and events
Reliability – provides redundant data access for improved reliability
Security – role and data based access control
Scalability & Performance

https://github.com/GridOPTICS

Protected Information | Proprietary Information

Architecture

Protected Information | Proprietary Information

Sample GOSS applications: GCA

Graphical Contingency Analysis (GCA) - a C# visual analysis
application that aids power grid operators and planners to effectively
manage potential network failures (N-1)
GOSS simplified the application by allowing us to combine all input
files (power system model, SCADA, power-flow) into a single data
source instead of managing multiple files separately
Data source abstraction allowed GCA to work with time-windowed
data
Application initiates a request for a

 topology and allows users to
 select the model to analyze

Access is restricted by roles. For
each utility, access is granted to a
set of roles and the user must be
in one of these roles in order to
access the data for that utility

Protected Information | Proprietary Information

Sample GOSS applications: NIS

Now able to re-use the
algorithm with different data
types.
The input is controlled the
same as other PMU data
sources, the application will
only have access to PMU
streams that the user has been
granted access to.

Net Interchange Schedule (NIS) a MatLab application that displays
the sum of the energy import and export transactions between an
Independent System Operator (ISO) or a Balancing Authority and
neighbors. NIS forecasting (NISF) application was developed to aid
the ISOs in economically dispatching the generation resources
The original application used manually formulated files for the desired
time series. With GOSS can use a light-weight client adapter and
any time series

Protected Information | Proprietary Information

Based on Proven Technologies

Project Development
Java
Apache ActiveMQ

Deployment

Apache Maven
OSGI via Apache Karaf

Security

LDAP
JAAS
SSL

Protected Information | Proprietary Information

GOSS Security & Request Flow

September 22, 2014 7

 GOSS Data Management Layer

1. Access Control Lookup and Check

2. Request Handler Lookup

JAAS Authentication

 Security Handlers

Request Handlers

Powergrid AC handler

Forecasting AC handler

PMU AC handler

Event AC handler

Powergrid model handler

Request

Credentials

Forecasting model handler

PMU request handler

Events request handler

Client API

Returns allowed roles
Processes request,

Returns Data

Response Request Request

Roles

Protected Information | Proprietary Information

GOSS Authentication

Authentication – uses widely accepted tools already
integrated into communication platform

Java Authentication and Authorization Service (JAAS)
Easily substitute login modules

Lightweight Directory Access Protocol (LDAP)
Open, industry standard application protocol for accessing and
maintaining distributed directory information services

Transport Layer Security/Secure Sockets Layer (SSL)
Cryptographic protocols to provide communication security

8

Protected Information | Proprietary Information

GOSS Access Control

Access Control – customizable for each data source
Request Specific Security Handlers

Security Handlers map request to list of allowed roles
User verified for correct role access
Multi-role Access

Request combining multiple sources
Handler implementations for common data types

Time series data

Protected Information | Proprietary Information

Initial Performance Benchmarking

September 22, 2014 10

Test 1: Comparison of average time
taken by data store and GOSS
individually in total READ request
processing time
• Data size ~700 KB
• Number of requests = 4,000
• Number of Clients = 1
• Each client executed in separate

thread.

Test 2: Request processing time
with increasing number of
concurrent READ data requests
• Each client sends 10

requests
• Data size ~700 KB
• Each client executed in

separate thread

Protected Information | Proprietary Information

Synchronous Performance After Enhancements

GOSS Overheads using same method as previous slide
Before enhancements, security adds almost 100% increase
After enhancements, reduced to only ~10%

0

5

10

15

20

25

No Security 9.8842 ms Security w/o Enhancements 19.6122
ms

Security w Enhancements 10.0631
ms

Overhead in ms

Overhead in ms

Protected Information | Proprietary Information

Performance Benchmarking Analysis

Per Client Request, processing time is stable even with increasing
number of clients
Scales well with increasing load
Total time spent inside GOSS includes not only data access but also:

Data routing between data source and application
Query conversion. Generic query format to data store specific query
(e.g., SQL)
Result conversion. Converting the results to format requested by the
application (including object transformation). Eg., JSON, XML, Serialized
Object, etc.
Security and access control

Tests show results in “synchronous” access mode. Asynchronous
access hides most of these latencies via pipelining.
Real-time applications likely to use either event-based or
asynchronous access.

September 22, 2014 12

Protected Information | Proprietary Information

Future Tasks

Synthetic Data Generation
Modify the code as needed to perform research
Ability to interface with other applications with lower cost
Simulators will be tied to GOSS

Fine Grained Security

Certificate based authentication
Improved multi-domain support

HPC Integration
Access data and launch simulation

Fault tolerance

Protected Information | Proprietary Information

GOSS Team

Bora Akyol bora@pnnl.gov
Poorva Sharma poorva.sharma@pnnl.gov
Craig Allwardt craig.allwardt@pnnl.gov
Mark Rice mark.rice@pnnl.gov
Tara Gibson tara@pnnl.gov

mailto:bora@pnnl.gov
mailto:poorva.sharma@pnnl.gov
mailto:craig.allwardt@pnnl.gov
mailto:mark.rice@pnnl.gov
mailto:tara@pnnl.gov

Protected Information | Proprietary Information

Questions?

	How to Leverage�GOSS: GridOPTICS Software System �in a Research Environment
	Overview
	Architecture
	Sample GOSS applications: GCA
	Sample GOSS applications: NIS
	Based on Proven Technologies
	GOSS Security & Request Flow
	GOSS Authentication
	GOSS Access Control
	Initial Performance Benchmarking
	Synchronous Performance After Enhancements
	Performance Benchmarking Analysis
	Future Tasks
	GOSS Team
	Questions?

