
How to Leverage

GOSS: GridOPTICS Software System

in a Research Environment

A Novel Software Framework for Integrating Power Grid Data Storage,

Management and Analysis

3rd Workshop on Next-Generation Analytics for the Future Power Grid

July 16-18, 2014

Protected Information | Proprietary Information

Overview

GOSS is a middleware architecture designed as a prototype future

data analytics and integration platform

https://github.com/GridOPTICS

What does that mean?

Supports heterogeneity – ease of integration with new/existing power grid

applications developed in different languages

Data source abstraction – separates data sources from applications and

provides a unified application programming interface (API) for access

Rapid development – Quickly make new data/events available to other

applications integrated with GOSS

Real-time – subscription to streaming data and events

Reliability – provides redundant data access for improved reliability

Security – role and data based access control

Scalability & Performance

https://github.com/GridOPTICS
https://github.com/GridOPTICS

Protected Information | Proprietary Information

Architecture

Protected Information | Proprietary Information

Sample GOSS applications: GCA

Graphical Contingency Analysis (GCA) - a C# visual analysis

application that aids power grid operators and planners to effectively

manage potential network failures (N-1)

GOSS simplified the application by allowing us to combine all input

files (power system model, SCADA, power-flow) into a single data

source instead of managing multiple files separately

Data source abstraction allowed GCA to work with time-windowed

data

Application initiates a request for a

 topology and allows users to

 select the model to analyze

Access is restricted by roles. For

each utility, access is granted to a

set of roles and the user must be

in one of these roles in order to

access the data for that utility

Protected Information | Proprietary Information

Sample GOSS applications: NIS

Now able to re-use the

algorithm with different data

types.

The input is controlled the

same as other PMU data

sources, the application will

only have access to PMU

streams that the user has been

granted access to.

Net Interchange Schedule (NIS) a MatLab application that displays

the sum of the energy import and export transactions between an

Independent System Operator (ISO) or a Balancing Authority and

neighbors. NIS forecasting (NISF) application was developed to aid

the ISOs in economically dispatching the generation resources

The original application used manually formulated files for the desired

time series. With GOSS can use a light-weight client adapter and

any time series

Protected Information | Proprietary Information

Based on Proven Technologies

Project Development

Java

Apache ActiveMQ

Deployment

Apache Maven

OSGI via Apache Karaf

Security

LDAP

JAAS

SSL

Protected Information | Proprietary Information

GOSS Security & Request Flow

July 18, 2014 7

 GOSS Data Management Layer

1. Access Control Lookup and Check

2. Request Handler Lookup

JAAS Authentication

 Security Handlers

Request Handlers

Powergrid AC handler

Forecasting AC handler

PMU AC handler

Event AC handler

Powergrid model handler

Request

Credentials

Forecasting model handler

PMU request handler

Events request handler

Client API

Returns allowed roles
Processes request,

Returns Data

Response Request Request

Roles

Protected Information | Proprietary Information

GOSS Authentication

Authentication – uses widely accepted tools already

integrated into communication platform

Java Authentication and Authorization Service (JAAS)

Easily substitute login modules

Lightweight Directory Access Protocol (LDAP)

Open, industry standard application protocol for accessing and

maintaining distributed directory information services

Transport Layer Security/Secure Sockets Layer (SSL)

Cryptographic protocols to provide communication security

8

Protected Information | Proprietary Information

GOSS Access Control

Access Control – customizable for each data source

Request Specific Security Handlers

Security Handlers map request to list of allowed roles

User verified for correct role access

Multi-role Access

Request combining multiple sources

Handler implementations for common data types

Time series data

Protected Information | Proprietary Information

Initial Performance Benchmarking

July 18, 2014 10

Test 1: Comparison of average time

taken by data store and GOSS

individually in total READ request

processing time

• Data size ~700 KB

• Number of requests = 4,000

• Number of Clients = 1

• Each client executed in separate

thread.

Test 2: Request processing time

with increasing number of

concurrent READ data requests

• Each client sends 10

requests

• Data size ~700 KB

• Each client executed in

separate thread

Protected Information | Proprietary Information

Synchronous Performance After Enhancements

GOSS Overheads using same method as previous slide

Before enhancements, security adds almost 100% increase

After enhancements, reduced to only ~10%

0

5

10

15

20

25

No Security 9.8842 ms Security w/o Enhancements 19.6122
ms

Security w Enhancements 10.0631
ms

Overhead in ms

Overhead in ms

Protected Information | Proprietary Information

Performance Benchmarking Analysis

Per Client Request, processing time is stable even with increasing

number of clients

Scales well with increasing load

Total time spent inside GOSS includes not only data access but also:

Data routing between data source and application

Query conversion. Generic query format to data store specific query

(e.g., SQL)

Result conversion. Converting the results to format requested by the

application (including object transformation). Eg., JSON, XML, Serialized

Object, etc.

Security and access control

Tests show results in “synchronous” access mode. Asynchronous

access hides most of these latencies via pipelining.

Real-time applications likely to use either event-based or

asynchronous access.

July 18, 2014 12

Protected Information | Proprietary Information

Future Tasks

Synthetic Data Generation

Modify the code as needed to perform research

Ability to interface with other applications with lower cost

Simulators will be tied to GOSS

Fine Grained Security

Certificate based authentication

Improved multi-domain support

HPC Integration

Access data and launch simulation

Fault tolerance

Protected Information | Proprietary Information

GOSS Team

Bora Akyol bora@pnnl.gov

Poorva Sharma poorva.sharma@pnnl.gov

Craig Allwardt craig.allwardt@pnnl.gov

Mark Rice mark.rice@pnnl.gov

Tara Gibson tara@pnnl.gov

mailto:bora@pnnl.gov
mailto:poorva.sharma@pnnl.gov
mailto:craig.allwardt@pnnl.gov
mailto:mark.rice@pnnl.gov
mailto:tara@pnnl.gov

Part 2 - Tutorial

Protected Information | Proprietary Information

OSGI (Open Service Gateway initiative)

Specification describing modular system and a service platform

implementing dynamic component model

Why?

Applications or components (called bundles) can be installed, started,

stopped, updated, and uninstalled without requiring a reboot.

Application life cycle management

Service registry allows bundles to detect the addition and removal of

services and adapt accordingly.

Protected Information | Proprietary Information

Karaf OSGI Platform

Apache Karaf is a platform providing features and services designed

for creating OSGi-based servers.

Enterprise Ready

Easy maven integrated feature installation.

SSH administration out of the box (even on windows).

Web based administration with quick feature installation.

JAAS Security Model (LDAP for GOSS implementation).

Bundle and Feature constructs.

Protected Information | Proprietary Information

Bundles

Java jar with some extra meta data

Meta data states what is needed to let a specific jar do its job and

what the jar will provide to the osgi environment.

Protected Information | Proprietary Information

Features

Features are a Karaf construct that allows multiple bundles to be

grouped together.

Protected Information | Proprietary Information

Bundle and Feature Packaging

Protected Information | Proprietary Information

Building Bundles/Features

GOSS uses maven to layer the building of bundles and features.

Protected Information | Proprietary Information

Java Integration API

To create a connection

 new GossClient(new UsernamePasswordCredentials(“username”, "password"));

To publish events

 client.publishTo(topic,event)

To subscribe to data or events

 client.subscribeTo(topic,eventProcessor)

To access data

 request = new TopologyRequest(model);

 response = client.getResponse(request);

To save data

 request = UploadRequest(data, dataId)

 response = Client.getResponse(request)

Protected Information | Proprietary Information

Tutorial Example

Requirements

As a utility we need a tool to calculate and publish/read the phase angle

difference between two PMUs.

Testing

We should verify that our implementation produces the correct value.

Simplifications for Tutorial

We are using a random function to “generate” PMU values for each of the

PMUs.

It is trivial to switch to a different streaming method (file, database, live

stream)

Protected Information | Proprietary Information

Tutorial Example - Design

Web Client

Desktop Client

Phase Difference Calculator

PMU Stream Generator

Protected Information | Proprietary Information

Stage 1 – Virtual machine

Start virtual machine (auto-login, account : goss/goss)

Protected Information | Proprietary Information

Stage 2 – Start server

Open Shelll (Shift+Alt+T)

Completed tutorial is located at /opt/goss-tutorial-complete

Protected Information | Proprietary Information

Stage 3 – Web client

Open browser to http://localhost:8181/pmu-tutorial/index.html

Protected Information | Proprietary Information

Stage 4 – Desktop Client

Double click on GOSS_Desktop_Client folder

Double click on TutorialClient.py

Protected Information | Proprietary Information

Stage 5 – Let’s see the code

Server side components:

Tutorial-pmu-feature

tutorial-pmu-server

tutorial-pmu-common

tutorial-pmu-web-ui

tutorial-pmu-desktop-ui

Install server side components

Start GOSS karaf server

Protected Information | Proprietary Information

Questions?

