
HPC Modeling of the Power
Grid

PNNL: Bruce Palmer, Henry Huang

ANL: Shrirang Abhyankar

LLNL: Liang Min, Slaven Peles, Steven Smith,
and Carol Woodward

PNNL-SA-112744

Why HPC?

Single processor performance (clock speed) has been flat
for a decade

Serial codes are limited by memory and processor speed,
and this limits the size and complexity of existing models

Modeling large systems using small computers involves
substantial aggregation and approximations

Parallel computing can increase memory and computing
power by orders of magnitude, thereby increasing the size
and complexity of power grid models that can be
simulated numerically

Parallel computing can reduce time-to-solution for large
and mid-sized problems

GridPACK™ Framework for Power Grid
Applications

Simplify development of HPC codes for simulating power
grid

Create high level abstractions for common programming
motifs in power grid applications

Encapsulate high performance math libraries and make
these available for power grid simulations

Promote reuse of power grid software components in
multiple applications to reduce development and
maintenance costs

Incorporate as much communication and indexing
calculations as possible into high level abstractions to
reduce application development complexity

Compartmentalize functionality to reduce maintenance
and development costs

GridPACK™ Software Stack

Core Data Objects

Power Grid

Network

Matrices and

Vectors

Base Network

Components

• Neighbor Lists

• Matrix Elements

Math Methods

• PETSc

• SUNDIALS

Mapper

Network Module

• Exchanges

• Partitioning

Task Manager

Import Module

• PTI Formats

• Dictionary

Export Module

• Serial IO

• PTI Formats

GridPACK™ Framework

Configure

Module

• XML

GridPACK™ Applications

Utilities

• Errors

• Profiling

Base Factory

• Network-wide

Operations

Application

Driver
Application Factory

Application

Components

Power Grid

Network

Matrices and

Vectors

Power Grid

Network

Matrices and

Vectors

GridPACK™ Application Stack

Contingency Analysis

Real-Time Path Rating

Ensemble Look-Ahead Prediction Simulation

GridPACK™ Framework

Y-Matrix Components

PF-Matrix DS-Matrix SE-Matrix

PF-Module DS-Module SE-Module

Integrated

Applications

Application

Modules

Network

Components

Power Flow Code

 1 typdef BaseNetwork<PFBus,PFBranch> PFNetwork;

 2 Communicator world;

 3 shared_ptr<PFNetwork>

 4 network(new PFNetwork(world));

 5

 6 PTI23_parser<PFNetwork> parser(network);

 7 parser.parse("network.raw");

 8 network->partition();

 9

10 PFFactory factory(network);

11 factory.load();

12 factory.setComponents();

13 factory.setExchange();

14

15 network->initBusUpdate();

16 factory.setYBus();

17

18 factory.setSBus();

19 factory.setMode(RHS);

20 BusVectorMap<PFNetwork> vMap(network);

21 shared_ptr<Vector> PQ = vMap.mapToVector();

22 factory.setMode(Jacobian);

23 FullMatrixMap<PFNetwork> jMap(network);

24 shared_ptr<Matrix> J = jMap.mapToMatrix();

25 shared_ptr<Vector> X(PQ->clone());

26

27 double tolerance = 1.0e-6;

28 int max_iteration = 100;

29 ComplexType tol = 2.0*tolerance;

30 LinearSolver solver(*J);

31

32 int iter = 0;

33

34 // Solve matrix equation J*X = PQ

35 solver.solve(*PQ, *X);

36 tol = X->normInfinity();

37

38 while (real(tol) > tolerance &&

39 iter < max_iteration) {

40 factory.setMode(RHS);

41 vMap.mapToBus(X);

42 network->updateBuses();

43 vMap.mapToVector(PQ);

44 factory.setMode(Jacobian);

45 jMap.mapToMatrix(J);

46 solver.solve(*PQ, *X);

47 tol = X->normInfinity();

48 iter++;

49 }

Dynamic Simulation Application

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 5 10 15 20 25

Initial PF
DS Time Integration
Linear Solver
Total

T
im

e
 (

s
e
c
o
n
d

s
)

Number of Processors

Real Time

Adding ANL solver and optimizer software to
GridPACK™

PETSc support in GridPACK™

Vector and Matrix classes

Parallel linear Solvers

Parallel nonlinear Solvers

Parallel Differential-Algebraic Equation solvers

Additional support for GridPACK™

Accelerating Power Flow application

Accelerating Dynamic Simulation application

Developing small-signal stability analysis application
(interfacing with SLEPc)

Incorporating parallel linear optimization software

Adding interfaces to the LLNL SUNDIALS
package

Adding the SUNDIALS integrator for DAE systems, IDA,
to GridPACK™

Error-based time step and order control

Multistep integration with Newton nonlinear solver

Possible extension to IDAS for sensitivities

New DAE integrator allows for longer steps when
system dynamics are slow and smaller steps when
dynamics are fast

Helping to generalize the DAE integrator API

Websites

GridPACK™ software located at https://www.gridpack.org

SUNDIALS: https://computation.llnl.gov/casc/sundials

https://www.gridpack.org/
https://computation.llnl.gov/casc/sundials

Issues for HPC

Need open source data sets for large, realistic problems
that can be shared publicly

Need extensible data formats that can support HPC
oriented I/O models (e.g. parallel ingestion from multiple
files by multiple processors)

Determining the best HPC architectures for power grid
simulation (e.g., processor configuration, I/O support)

Hash Distribution Performance

Cyclic Communication One-sided Communication

