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Why HPC? 

Single processor performance (clock speed) has been flat 
for a decade 

Serial codes are limited by memory and processor speed, 
and this limits the size and complexity of existing models 

Modeling large systems using small computers involves 
substantial aggregation and approximations 

Parallel computing can increase memory and computing 
power by orders of magnitude, thereby increasing the size 
and complexity of power grid models that can be 
simulated numerically 

Parallel computing can reduce time-to-solution for large 
and mid-sized problems 



GridPACK™ Framework for Power Grid 
Applications 

Simplify development of HPC codes for simulating power 
grid 

Create high level abstractions for common programming 
motifs in power grid applications 

Encapsulate high performance math libraries and make 
these available for power grid simulations 

Promote reuse of power grid software components in 
multiple applications to reduce development and 
maintenance costs 

Incorporate as much communication and indexing 
calculations as possible into high level abstractions to 
reduce application development complexity 

Compartmentalize functionality to reduce maintenance 
and development costs 

 

 



GridPACK™ Software Stack 
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GridPACK™ Application Stack 
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Power Flow Code 

 1 typdef BaseNetwork<PFBus,PFBranch> PFNetwork; 

 2 Communicator world; 

 3 shared_ptr<PFNetwork> 

 4     network(new PFNetwork(world)); 

 5 

 6 PTI23_parser<PFNetwork> parser(network); 

 7 parser.parse("network.raw"); 

 8 network->partition(); 

 9 

10 PFFactory factory(network); 

11 factory.load(); 

12 factory.setComponents(); 

13 factory.setExchange(); 

14  

15 network->initBusUpdate(); 

16 factory.setYBus(); 

17 

18 factory.setSBus(); 

19 factory.setMode(RHS); 

20 BusVectorMap<PFNetwork> vMap(network); 

21 shared_ptr<Vector> PQ = vMap.mapToVector(); 

22 factory.setMode(Jacobian); 

23 FullMatrixMap<PFNetwork> jMap(network); 

24 shared_ptr<Matrix> J = jMap.mapToMatrix(); 

 

25 shared_ptr<Vector> X(PQ->clone()); 

26 

27 double tolerance = 1.0e-6; 

28 int max_iteration = 100; 

29 ComplexType tol = 2.0*tolerance; 

30 LinearSolver solver(*J); 

31 

32 int iter = 0; 

33 

34 // Solve matrix equation J*X = PQ 

35 solver.solve(*PQ, *X); 

36 tol = X->normInfinity(); 

37 

38 while (real(tol) > tolerance && 

39        iter < max_iteration) { 

40   factory.setMode(RHS); 

41   vMap.mapToBus(X); 

42   network->updateBuses(); 

43   vMap.mapToVector(PQ); 

44   factory.setMode(Jacobian); 

45   jMap.mapToMatrix(J); 

46   solver.solve(*PQ, *X); 

47   tol = X->normInfinity(); 

48   iter++; 

49 } 



Dynamic Simulation Application 
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Adding ANL solver and optimizer software to 
GridPACK™ 

PETSc support in GridPACK™ 

Vector and Matrix classes 

Parallel linear Solvers 

Parallel nonlinear Solvers 

Parallel Differential-Algebraic Equation solvers 

Additional support for GridPACK™ 

Accelerating Power Flow application 

Accelerating Dynamic Simulation application 

Developing small-signal stability analysis application 
(interfacing with SLEPc) 

Incorporating parallel linear optimization software 



Adding interfaces to the LLNL SUNDIALS 
package 

Adding the SUNDIALS integrator for DAE systems, IDA, 
to GridPACK™ 

Error-based time step and order control 

Multistep integration with Newton nonlinear solver 

Possible extension to IDAS for sensitivities 

New DAE integrator allows for longer steps when 
system dynamics are slow and smaller steps when 
dynamics are fast 

Helping to generalize the DAE integrator API 



Websites 

GridPACK™ software located at https://www.gridpack.org  

SUNDIALS: https://computation.llnl.gov/casc/sundials 

 

https://www.gridpack.org/
https://computation.llnl.gov/casc/sundials


Issues for HPC 

Need open source data sets for large, realistic problems 
that can be shared publicly 

Need extensible data formats that can support HPC 
oriented I/O models (e.g. parallel ingestion from multiple 
files by multiple processors) 

Determining the best HPC architectures for power grid 
simulation (e.g., processor configuration, I/O support) 



Hash Distribution Performance 

Cyclic Communication One-sided Communication 


