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ABSTRACT
The number of sensors connected to the electric power sys-

tem is expected to grow by several orders of magnitude by 2020.
However, the information networks which will transmit and an-
alyze the resulting data are ill-equipped to handle the resulting
volume with reliable real-time delivery. Without the ability to
manage and use this data, deploying sensors such as phasor
measurement units in the transmission system and smart meters
in the distribution system will not result in the desired improve-
ments in the power grid. The ability to exploit the massive data
being generated by new sensors would allow for more efficient
flow of power and increased survivability of the grid. Addition-
ally, the power systems of today are not capable of managing
two-way power flow to accommodate distributed generation ca-
pabilities due to concerns about system stability and lack of sys-
tem flexibility.

The research that we are performing creates a framework
to add ”intelligence” to the sensors and actuators being used
today in the electric power system. Sensors that use our frame-
work will be capable of sharing information through the various
layers of the electric power system to enable two-way informa-
tion flow to help facilitate integration of distributed resources.
Several techniques are considered including use of peer-to-peer
communication as well as distributed agents.

Specifically, we will have software agents operating on sys-
tems with differing levels of computing power. The agents will
cooperate to bring computation closer to the data. The types of
computation considered are control decisions, data analysis, and
demand/response.

When paired with distributed autonomous controllers, the

sensors form the basis of an information system that supports
deployment of both micro-grids and islanding. Our efforts in the
area of developing the next generation information infrastructure
for sensors in the power grid form the basis of a broader strat-
egy that enables better integration of distributed generation, dis-
tribution automation systems and decentralized control (micro-
grids).

NOMENCLATURE
Agent An agent is defined to be a software entity that is capable

of accomplishing a given task on its own. An agent can
be mobile or fixed.

Software Framework A software framework provides the plat-
form upon which the agents described
in the text execute and accomplish tasks.
The framework hosts the agents.

INTRODUCTION
Significant portion of the smarts in the smart grid efforts

to modernize the electric power system come from application
of many sensors to optimize asset efficiencies. The number of
sensors connected to the electric power system is expected to in-
crease by several orders of magnitude by 2020 [1]. These sensors
include (but are not limited to) synchrophasor sensors deployed
throughout the transmission system as well as smart meters, re-
sponsive home and water heaters in the distribution system.

The research presented in this paper creates a distributed
agent-based framework to add ”intelligence” to the sensors and
controllers being used in the electric power system today. These
intelligent sensors are capable of sharing information through the
various layers of the electric power system to enable brand new
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applications including two-way power flow to help facilitate in-
tegration of distributed generation. Finally, when paired with
distributed autonomous controllers, the sensors can form the ba-
sis of an intelligent system that supports both micro-grids and
islanding. While not discussed in this paper, our intelligent sen-
sors are capable of adjusting measurement methods to the sensor
environment and are able to perform measurements in multiple
dimensions such as information networks and electric power sys-
tem simultaneously.

Our research is significant because it lays the software plat-
form groundwork for distributed operation and control of the
electric power system especially at the distribution layer where
end customers are being served. The intelligent sensors and the
distributed control paradigms enabled by this intelligent sensor
framework improve system reliability and support integration of
distributed generation.

Our objective is to develop an agent software framework that
adds intelligence to networked sensors in the electric power sys-
tem in order to:

meet real-time data processing requirements;
adjust automatically the resolution and frequency of data be-
ing sent across the sensor network based on current state of
the systems being observed by the sensor;
increase the scalability of the information networks;
explore new ways of correlating data from multiple do-
mains;
improve control system response times by locating intelli-
gence closer to the control points;
create the information channels to enable two-way power
flows to speed up the integration of distributed generation in
the power system, to allow decentralized control to support
micro-grids and islanding.

The intelligent agent-based sensors we envision are capable
of operating autonomously without requiring intervention from
a centralized control point. They adapt and tailor their mea-
surement methods based on environmental conditions and per-
form multiple types of measurements belonging to different do-
mains to enable localized autonomous controls while also com-
municating this information back to a system operations center.
Alternately, measurements from multiple single-purpose sensors
may be combined by an intelligent sensor aggregator to support
legacy sensors that already exist in the power grid.

This manuscript presents the results of an ongoing research
project with the goal of introducing our work to a broader com-
munity and getting feedback. The rest of this manuscript is or-
ganized into three main components. First, we describe poten-
tial use cases and applications of agent-based intelligent sensors
in the future power grid. Second, we summarize our software
framework paying particular attention to requirements that are
specific to the power grid. Third, we present our distributed agent
simulation environment and our results. We present our future

work directions in the conclusion.
POTENTIAL APPLICATIONS OF INTELLIGENT SEN-
SORS IN THE FUTURE POWER GRID

In this section we discuss potential applications of agent-
based, intelligent sensors in the future power grid through use
cases that we developed as part of our requirements analysis. The
use cases listed here are not an exhaustive list, but are included in
this manuscript to illustrate what is possible when we distribute
intelligence instead of locating it at a central point. The use cases
that we selected for this manuscript are:

1. Distributed Generation as Forecastable Resource
2. Load sequencing by use of agents
3. Goal-based demand-response using distributed agents in the

power system
Use Case 1: Distributed Generation as a Forecastable
Resource

There is uncertainty around integration of distributed re-
sources such as rooftop solar panels, end-customer wind tur-
bines, battery storage and plug-in hybrid electric vehicles
(PHEVs). An electricity generator plugged into the electric
power system at the distribution layer is treated as “negative”
load. This means that it is not actively accounted for and is not in-
tegrated into the electricity operations planning like a bulk power
generator. Specifically, even when ample capacity is available
from distributed resources in the distribution system, the system
is unable to accommodate this capacity by flowing power from
the distribution system back to the transmission system and to a
different location where the power may be needed.

This use case is about turning a set of distributed resources
connected (electrically) to the distribution system into aggre-
gated forecastable resources. We can accomplish this type of
resource integration by means of an agent based software frame-
work. The agent framework has three components:

1. A forecaster/historian agent located at the distribution sub-
station

2. Resource availability agents that gather a list of distributed
resources and monitor their status in real time

3. Resource integration agents that are responsible for collect-
ing resource generation information. The collected informa-
tion is then made available to the forecaster located at the
distribution substation

The (distributed resource) forecaster collects information gener-
ated by the agents and is capable of generating forecasts looking
ahead at 60 minute, 360 minutes and 24 hours intervals. These
forecasts can be made available to the utility system operations
center and they can be treated similar to a forecast coming from
a bulk power generator.

Use Case 2: Sequencing Load in the Distribution Sys-
tem

Consumer loads are largely a resource out of control of the
utility. A popular demand/response technology calls for two way
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communication between the utilities and consumers, allowing
the utility to shed certain loads during peak loads. One side ef-
fect of this type of technology is that the loads get synchronized
and the resulting power draw on the feeders has large peaks and
valleys. This causes almost the opposite effect of the desired re-
source management goals.

A potentially more efficient and less intrusive system would
be to sequence certain types of consumer base loads, providing a
more stable equivalent load to the sub-transmission system.

Imagine a neighborhood in which each of the water heaters
has an intelligent controller allowing for intra-feeder communi-
cation. Through auto-negotiation the water heaters decide that
they have peak usage in the morning and rather than all turning
on at the same time they will use a time-slicing algorithm to heat
water one (or two) at a time. Additionally they could be aware
of typical usage time and pre-heat in a similar fashion. Of course
if the temperature dropped below some threshold a device could
drop out of the time-slicing mode; however the general use would
be coordinated.

Another potential consumer load of interest would be heat
and/or cooling systems. It would be optimal for a consumer’s
end service to be non differentiable from a non-sequenced world.

A substation could receive knowledge of this time-slicing
behavior and use it for its own planning needs. An agent based
framework provides the capabilities expected:

1. Consumer level distributed agent technology which can de-
scribe load characteristics (time of day, duration, frequency,
seasonal adjustment, etc.)

2. Sequencing / voting (based on load characteristics develop
an optimal slicing scheme)

3. Automatic grouping (based on the number of sensors, auto-
matically break up into “smart” groups)

Use Case 3: Goal-based demand-response
There are two types of demand response schemes currently

employed in the electric power system. The traditional demand
response schemes are based on direct load control where a utility
by means of a communication channel triggers a responsive asset
to turn on and off. A second type of demand response (while not
prevalent in the field) uses a price signal to elicit customer be-
havior that results in reduction of load through voluntary means.
Note that while direct load control is deterministic (mostly),
price-signal based demand response is non-deterministic. The
Olympic Peninsula project showed that it is possible to elicit load
reduction better than direct load control using price-signal based
demand response [2].

This use case utilizes our distributed agent technology for
a collaborative demand response scheme with interacting agents
that work together to achieve a demand management goal and
confirm the amount of load reduction to the rest of the utility
network thereby alleviating the non-deterministic nature of price

based demand response. For example, we can define a (demand
management) Zone Controller as an entity that sets demand re-
duction goals for the zones that are under its control/influence.
The zone controller assigns a load reduction goal to its sub-
sidiaries and this zone reduction goal flows through the system
from the 1st tier (which could be interpreted as a region con-
trolled by a balancing authority) to 2nd tier zones (e.g. a utility)
and all the way down to individual distribution substations . The
agent framework can be extended to equipment located at cus-
tomer premises as well. At each tier, the zone controllers are
implemented as ”software agents”. Specifically, they collaborate
with each other, exchange information (securely) and iterate until
desired goals are reached.

The amount of demand response achieved is collected and
communicated. Therefore, the zone controller does not need to
rely on metering observations to see whether the demand re-
sponse scheme is working. Agents for each household could
have different settings for priorities (maintain power level vs.
take advantage of price). Aggregate result of the interaction of
those agents would be the response for the ”neighborhood”.
A SOFTWARE FRAMEWORK FOR INTELLIGENT SEN-
SORS FOR THE POWER GRID

Our research focuses on creating a usable framework for
adding intelligent software agents to both existing and new de-
vices that are deployed in the power grid. In this section, we
will summarize the requirements we have discovered through use
case analysis and from discussions with power system experts.
We then present our design choices for the agent framework. We
note that the research we present here is still ongoing. One of our
goals in presenting our results and analysis as soon as possible is
to gather feedback to help shape the future years of our work.

Requirements for software sensors for the power grid
Our research team has analyzed a number of use cases from

power transmission, and distribution systems to derive require-
ments for the sensor platform. Note that it may not be feasi-
ble to integrate the rich set of functionality to every sensor, and
control element used in the power system. Additionally, due to
long equipment replacement cycles in the power industry, it may
not be feasible to go ahead and replace old equipment immedi-
ately. In order to accelerate the deployment of intelligent sensors
in the power grid, we propose to use a proxy device that exists
in between legacy sensors and control applications and provides
most of the enhanced functionality described in this manuscript.
This device will be referred to as an ”intelligent sensor aggrega-
tor (ISAg).”

Hardware Requirements: In order to allow maximum
flexibility for the software framework, our hardware require-
ments are not very demanding. However, there will still be in-
stances of hardware such as an 8-bit microcontroller that is not
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able to run the framework. For devices that are not capable of
accommodating the agents, as we discussed in the previous sec-
tion, an ISAg device can act as a proxy platform and still enable
the functionality that is required.

The platform hardware requirements can be separated
into central processing unit (CPU), memory, storage and in-
puts/outputs. For CPUs, 32 bit addressing, and a memory man-
agement unit (MMU) that supports virtual memory, paging and
process memory segmentation are highly desirable. Note that
the MMU requirement is not very severe today since in the last
10 years, embedded microprocessors from many CPU families
including ARM, PPC, x86 have all gained an MMU. The pri-
mary benefit of the MMU in embedded computing is to be able
to support memory isolation and segmentation between different
processes running on the CPU. It enables different agents run-
ning on the system to be isolated from each other and improve
the cyber security of the platform.

The memory (RAM) located on a sensor used in the power
system is a lot less than what is now common in consumer ap-
plications. It is common to see 8MB or less memory on older
equipment whereas modern equipment like a phasor data con-
centrator (similar in functionality to an ISAg) may have upwards
of 2GB of memory. For the purpose of this project, we will tar-
get devices with 32MB or more memory while paying attention
to detail to ensure that the platform can be sized down to lower
memory sizes.

The devices we will be targeting in this project are required
to have at least 128MB non-volatile storage. Typically in control
systems, flash memory is used and the operating system must be
aware of wear associated with flash memory when information
is written to the same sectors repeatedly.

A sensor may have many inputs and outputs. The sensor
platform we are designing here has no specific requirements on
inputs and outputs. An ISAg may have many serial and net-
worked inputs. Since the sensors are assumed to be networked,
they have at least one wired or wireless network interface.

Operating System Requirements: The capabilities
developed in this project will be operating system agnostic.
Given the memory, storage and CPU capabilities of devices that
we typically see in the power system, the operating system we
choose must be capable of running on devices with a memory
of 32MB and reserve no less than 16MB of memory for sensor
agent framework for agents.

Diagnostic and Manageability Requirements: One
of the advantages of using agents in our framework is the ease
of diagnostics and management. Agents can be dispatched to
collect data as they move through the system and then carry that
data back with them to a management station. The platform must
be able to manage the activities of all hosted agents. The man-

agement may include stopping, restarting or banning an agent
deployed in the system.

Information Sharing Requirements: To be able to
share information is a key tenet of any distributed system. As
demonstrated by the use cases we described previously, the
agents in the power system are capable of accomplishing tasks
that would require tremendeous amount of collaboration if one
tries to implement the same capability using a centralized sys-
tem. However, we also need to be careful about how much in-
formation is shared and where in order to prevent an information
overload and keep information as secure as possible. Therefore,
we will divide the operational area of the sensors to designated
sensor collaboration regions (SCRs). Furthermore, the sensors
may be divided into sub-groups referred to as ”sensor task group”
(STG) that are task based. For example, all sensors collaborat-
ing on accomplishing load sequencing may belong to a ”load se-
quencing” STG1. The key requirement is for sensors in an STG
to be able to freely exchange information. Moreover, there may
be information that needs to be exchanged (such as management
information) for all the sensors in an SCR. The agent-based soft-
ware framework that we are developing must be able to accom-
modate many-to-many secure and reliable information exchange.

Agent Software Framework Runtime Environment
Requirements: The intelligent sensor framework presented
in this manuscript supports software agents. Software agents are
entities that can either be stationary or roam between sensors in
the system. Agents are task driven and can be used to accom-
plish a task that involves many sensors. The following are the
requirements for our software framework:

1. Agents run on multiple CPU architectures as long as agent
resource requirements are met. We must provide the agents
with a runtime environment independent of the underlying
CPU architecture.

2. Agent framework must be able to determine whether it has
the capabilities to support a particular agent. In essence, the
platform and the agent enter into a binding contract when a
platform hosts an agent.

3. Agent framework must be able to determine if the agent re-
questing ”hosting” is authorized to execute on that platform.

4. Agent framework must be able to determine if the agent code
has been tampered with.

5. Agent Framework must allow agents to store information
on-board.

6. Agent Framework must provide access to information col-
lection and dissemination services for the agent.

1We should note here that the sensor collaboration regions and sensor task
groups can be easily implemented using Internet Protocol (IP) multicast proto-
cols.
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7. Agent Framework must be able to guarantee (stochastically)
a requested slice of its resources such as memory, storage,
processor cycles to an agent.

8. Agent Framework must be able to detect and terminate an
agent that is not behaving according to its agent/platform
contract.

9. Agent Framework must be able to collect and transmit an
inventory of agents hosted by the platform.

10. Agent Framework must implement a liveness check for each
agent hosted on the platform in order to detect and terminate
malfunctioning agents.

11. Agent Framework must provide a protected environment for
each agent. This could include memory and storage protec-
tion.

Configuration, Change and Agent Update Require-
ments: Another significant benefit of an agent-based software
paradigm is the ease with which configuration, change and agent
software updates can be performed. For example, if smart meter
data collection is implemented as an agent, we can update the
metrology agent without needing to perform a costly and time
consuming monolithic firmware upgrade for the entire platform
image. A new version of an agent can simply be dispatched by
means of an update agent that moves through the system. An
update agent can also perform configuration and change man-
agement duties. The main requirement for the agent framework
is a well-defined interface for agents such that an agent can be up-
graded without needing a complete software update for the entire
platform.

Security and Robustness Requirements: The sen-
sors and controllers in the power system are networked devices.
Our intelligent agents require ubiquitous information sharing ca-
pabilities to be able to perform their tasks collaboratively. Any
system that is comprised of networked devices must meet the
following basic requirements:

1. The networked devices must be able to handle incoming net-
work traffic at the full data rate supported by its interfaces.
For example, a sensor that has a 100Mbps Ethernet interface
must be able to receive packets at that full rate indefinitely
and not crash or hang. Note that especially for platforms
with limited processing power; this requirement may be met
by means of hardware support.

2. The device hardware must provide interfaces to the agent
framework to accommodate physical tamper detection warn-
ing systems and respond to an event generated by the tamper
detection circuitry.

3. Agent Framework must validate the software as part of the
boot process.

4. Agent Framework must periodically validate the software

to detect tampered executables if the software framework
resides in modifiable storage.

5. Agent Framework needs the means to lock certain memory
locations as read-only once the boot process is completed.
This may include all cryptographic and authentication li-
braries.

6. Agent Framework must be able to detect resource exhaus-
tion (either malicious or due to defective software) and take
corrective action.

7. For battery operated platforms, platform must be able to de-
tect behavior that causes battery exhaustion and take correc-
tive action.

8. Agent Framework must be resilient against misfiring inter-
rupts. The platform must be able to mask a misfiring inter-
rupt.

9. Agent Framework must offer memory protection to hosted
agents and PSMs.

In addition to the basic requirements, the agent framework
must be able to meet authentication, authorization and account-
ing (AAA) requirements as discussed in [3] as well as require-
ments for communication protocols security. Additional cy-
ber security requirements may also be found at ”Guidelines for
Smart Grid Cyber Security” published by NIST [4].

INTELLIGENT SENSOR SOFTWARE FRAMEWORK DE-
SIGN

The intelligent sensor software framework needs to meet
the requirements that we discussed in the previous section. An
overview of the sensor framework is given in Figure 1. The sen-
sors in our environment are networked devices with digital and
analog sensing (and control) interfaces. The operating system
shown in a dashed outline is an optional component. Note that
there are runtime environments that can run directly on hardware
without the need of an operating system [5]. The sensor frame-
work shown as a component above the operating system is the
main runtime environment for the agents discussed in this paper.

The internals of the sensor framework are shown in Figure 2.
At the base layer, we show either a direct hardware interface that
allows the sensor framework to run on top of hardware; or an
operating system interface that allows the sensor framework as a
module inside an operating system. The agent network commu-
nication layer inside the framework provides a network commu-
nication interface including the necessary cyber security func-
tions for data transport. The agent discovery, cooperation and
collaboration layer allows the agents to discover other agents
and devices in their environment. The agents are then capable
of exchanging information securely and cooperating to accom-
plish tasks as we discussed previously in the text. The agent
authentication and authorization layer validates that an agent is
authorized to execute on the sensor and that it is not tampered
with during transit. The authentication and authorization of the
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FIGURE 1. Intelligent Sensor Framework Overview

agent can not be completed without consulting with the resource
scheduling and guarantees layer. The resource scheduling layer
determines whether the platform has sufficient resources to ac-
commodate this agent. The agent instantiation and mobility layer
supports movement of agents between devices. Finally, the agent
execution environment provides all other services that allow an
agent to accomplish its tasks.

INTELLIGENT SENSOR SOFTWARE SELECTION
We have considered Java, Python and Lua for implement-

ing our software framework. Python [6] is a general purpose
programming language similar in usability to C/C++ and enjoys
a broad user base. Python is supported by many architectures.
Lua [7] is a powerful, lightweight, fast, embeddable scripting
language. However it is not object oriented. One of the main re-
quirements of platform is ability to load/unload modules. Also,
python is better equipped in terms of functionality, tools, and
reference manuals [8]. Using Lua would put a lot of burden on
programmers to achieve this functionality. There are many ver-
sions of Java virtual machines (JVM) which have been modified
for embedded systems. The main advantages of using Java are:
portability, software reuse, built-in safety and security mecha-
nisms, and memory management. Some of these advantages also
apply to Python and Lua. Python needs a underlying operating
system to operate on sensor node. It supports modular design
and we can write applications which dynamically load/unload
modules from the node. Both Java and Python provide a garbage
collection mechanism. As for protection and authentication of
modules, programmer can write interfaces to implement the de-
sired functionality. Python provides better memory protection
than C since Python does not use pointers or access memory in

FIGURE 2. Intelligent Sensor Framework Internals

a direct way. The downside is that it is interpreted and therefore
slower.

One of the JVMs we considered for our purpose is Squawk
VM [5]. The Squawk VM, is an open-source platform for wire-
less sensors. It is certified on the Java Micro Edition Information
Module Profile (CLDC 1.1 IMP 1.0) [9] and provides developers
with the benefit of standardized Java language. Squawk is mostly
written in Java and can run without an OS directly on hardware.
This is one of the major advantages of squawk compared to other
platforms. This capability makes the operating system optional
in our framework. The architecture of the Squawk VM was in-
spired in part by the Squeak [10] and Klein VM [11] architec-
tures.

Squawk can be used to compile and optimize code VM com-
ponents, other Java components, and bytecodes ahead of time
(AOT). Squawk is designed to run multiple applications using
an application isolation mechanism such that each application,
called an ”isolate,” maintains its own copy of its mutable or mod-
ifiable system state. This will greatly help us develop agents,
which can be dynamically loaded/unloaded from sensor plat-
form. Each application is represented by a Java object, which
is an instance of class Isolate. The synchronization of resources
is tracked on a per-isolated-application basis.

Squawk also provides thread synchronization. Threads in
one isolated application are managed as a group without affect-
ing threads in another isolate [12]. The Isolate instance can be
used to query status of an application associated with it, and
even start, stop, pause or resume application. This provides us
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with complete control of Isolates, which is highly desired for se-
curity and one of the major requirements. Another capability
that we want from our platform is the ability to transport agents
from one node to other. In case of Squawk, Isolates will have
to be loaded/unloaded and transported. In Squawk, the entire
state of an application (treated as isolate) is stored as java ob-
jects which can be serialized to disk/stream. Because each Iso-
late can be serialized onto a stream, other nodes can read that
stream into another Squawk VM to immediately reconstitute the
isolate [13]. This migration of isolates enables us to implement
roaming agents easily.

Apart from selecting a platform which supports dynamic
loading of modules, an agent deployment tool enables us to trans-
port these modules (or isolates) between different nodes. The
agent deployment tool provides a runtime environment which is
used to actually run the agent application. This runtime environ-
ment, implemented in Java, ensures transport of messages about
agents, registration and de-registration of agents in the commu-
nity, and also lookup for services provided by agents themselves.
FIPA specifications addresses several aspects of agent system de-
velopment [14].

Some agent and communication systems that we considered
for our architecture are JADE, JINI, and Cougaar.

Jini was developed and introduced by Sun Microsystems in
1999 [15]. Jini is a service oriented architecture for networks
services that addresses problems specific to distributed systems.
Jini uses a lookup service to broker communication between
the client and services. This appears to be a centralized model
(though the communication between client and service can be
seen as decentralized). This kind of architecture does not scale
well for large systems.

The other agent system that we considered, Cougaar [16] is
also Java based. It is used for highly scalable distributed agent-
based applications. It is the product of multi-year DARPA re-
search project to develop an open-source agent based architec-
ture. One of the major disadvantages of cougaar is that it is not
FIPA compliant.

JADE (Java Agent Development Framework) is a software
framework fully implemented in Java [17]. It provides a set of
Java classes that allow a developer to build a FIPA-compliant
multi-agent system quiet easily. Jade also provides a set of graph-
ical tools that help user to implement a multi-agent system. The
configuration can even be changed at run-time by moving agents
from one machine to another when required. An add-on to JADE
called LEAP replaces some part of JADE kernel creating a mod-
ified environment called JADE-LEAP which allows the imple-
mentation of agents in mobile devices with limited resources.

The synergy between JADE and LEAP allows us to ob-
tain a FIPA compliant agent platform with reduced footprint and
compatibility with mobile Java environments down to J2ME-
CLDC MIDP 1.0. For now, we have decided to rely on JADE-
LEAP agent system for communication/transportation of agents

FIGURE 3. NetLogo simulation showing agents and controls.

between nodes. During development, if we are not satisfied with
the performance of JADE-LEAP, then we will re-evaluate the
agent systems and other options.

DISTRIBUTED AGENT SIMULATION ENVIRONMENT &
RESULTS

In order to explore our concepts we first built a conceptual
demo in NetLogo [18]. This allowed us to concentrate on our
ideas without worrying about implementation at the same time.
NetLogo was chosen for its ease of use, informative documenta-
tion, and graphical nature which makes it useful for demonstra-
tion purposes. NetLogo also makes it simple to add graphs for
displaying data about a simulation in progress and aids in under-
standing what the agents are doing at any given tick. Figure 3
shows the NetLogo simulation where components of the energy
delivery system were modeled as agents.

Simulation Terminology
Ticks: In NetLogo a ”tick” defines a ”turn” in the simulation

where every agent gets a chance to take its action based on its
current state. For this model, ticks have been mapped to seconds.

Substation: A substation is responsible for delivering en-
ergy to houses downstream. It receives energy goals from
upstream which it must meet to ensure smoother energy use
throughout the grid. When it detects that energy use will be
above the goal, it can send conserve signals to its houses ask-
ing them to reduce consumption.

House: A house receives its energy from a Substation. A
house can have several appliances (HVAC, refrigerator, etc.) as
well as a base load which takes into account all other uses (light-
ing, television, etc). In this model, only water heaters are mod-
eled, but the agent based setup eases the addition of other appli-
ances.

Water heater: A water heater draws power from its house.
It can be in one of two states: waiting or heating. While wait-
ing it is monitoring the energy of the water to make sure it is at
the goal. If water energy drops, then it enters the ”heating” state
where it heats the water until it reaches the goal. Once the en-
ergy of the tank is at the goal, it goes back to the ”waiting” state.
Water heaters also have a ”low water mark” which indicates that
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tank energy is critically low. In the GUI, the tanks energy is rep-
resented by its color from blue (low energy) to red (high energy).

Residents: The inhabitants of the house are represented by
the Resident agent. The function of this agent is to ”consume”
the resources of the house which can cause other agents to take
actions. For instance, each resident has a schedule for when they
will take a shower which has the effect of reducing the energy in
the water heaters tank.

Distribution Lines: These transfer energy from the substa-
tion to the houses. In this model they serve no function other
than as a display for showing how much energy is being used
represented by line thickness.

IgnoreLowWaterMark: By default, if a water heater is un-
der its LowWaterMark, its house will ignore a conserve request.

EnergyUseToken: A house possessing a token can draw its
required load from the substation.

Simulation Description
For every tick in the model, there is a sequence of agent

actions that happen. First, water heaters in a waiting state enter a
heating state if their tank energy is below goal. Water heaters in
a heating state enter a waiting state if the tank is at goal. Next,
houses estimate their energy usage based on the state of their
water heaters and their base energy usage. Substations receive
these estimates and compare them against their load goal. If the
total is over load goal, they enter a conserve state. Substations in
a conserve state send a conserve signal to their houses and enter
a monitor state if their estimate is under goal or a a conserve
timeout has elapsed. A house receiving a conserve signal polls its
appliances as to their ability to conserve. Water heaters willing
to conserve are flipped back to their wait state.

There are three different strategies employed by the agents in
our model to deal with energy usage and attempts to keep usage
under goal:

Global signal: If the substation detects that energy use is
over goal, then for 10 minutes it will send a conserve signal to
the houses under it. Every tick a house can decide whether or
not to honor the request. If LowWaterMarks are being honored,
then the house will always ignore a conserve request if its water
heaters energy is too low.

Individual Signal: Every tick that a substation detects en-
ergy use is over goal, it sends a conserve signal to its houses. If a
house chooses to respect the signal, then it gives a 10 minute wait
to its water heater (which it can ignore if the LowWaterMark is
reached).

Cooperative Mode: In this mode, household agents coop-
erate in order to meet the substations energy goal. Using a set of
rules common to all the agents, they individually decide whether
or not to claim an energy use token for ten seconds. While it
maintains the token, that house is allowed to meet its energy
needs.

In the cooperative strategy, the houses always follow the

rules and respect assignment of the token which effectively
means they always conserve. The Global and Individual strate-
gies can also be run this way, but this leads to poor behavior
(Has this been observed in practice too). If all houses respect the
conserve signal, then they will eventually synchronize causing
them all to turn on at once. The substation then sends out a con-
serve signal, since this pushes energy use over goal, and causes
all water heaters to turn off. The simulation settles into a pat-
tern of spikes where all heaters turn on, then periods of inactivity
while all heaters conserve. For this reason, the model assigns
each house a random chance to respect the conserve signal.

Details of Cooperative Mode The household agents
in the cooperative mode operate using the Belief-Desire-Intent
model of agent behavior:

Beliefs: States of the other agents (energy use, priority)
Desire: To meet their substations energy use goal while still
maintaining quality of service to their residents
Intent: Run their appliances or to conserve

Every tick, households on the same substation send their es-
timated energy use and their priority. The priority is the energy
level of their water heaters. This information forms each agents
beliefs about the current needs of their neighbors. They then
evaluate these beliefs against the desire to meet the energy goal
of the substation while also keeping quality of service for their
residents. To do this, each agent operates off the same set of rules
shown in Figure 4.

The base load required from each house is subtracted from
the energy goal. If any energy remains, then a list of houses
is formed of those without a token. If any houses are below the
LowWaterMark, then select the one that is furthest from its water
heater’s LowWaterMark. If that is the acting house, it claims the
token. Next, remove the selected house from the list and subtract
its energy needs. As long as energy remains, go through this
process again until no house is below its LowWaterMark. If all
houses are above LowWaterMark and energy remains, check if
any house has a water heater below its Tank Energy Goal. Select
the house that is closest to its goal. If it is the acting house,
it claims the token. As with the previous process, remove the
selected house from the list of remaining houses and subtract its
energy needs. If any energy remains, repeat the steps of checking
if a house is below its Tank Energy Goal. Acting by this rule set
means that priority is given to those houses with the worst quality
of service. This prevents ”sacrificing” a house so that others may
reach their goals faster. It also means that once a minimum is
met, priority goes to the houses closest to reaching their goal in
order to take them out of the equation. This simplifies the latter
stages of planning.

Background
The Department of Energy’s 2001 Residential Building En-

ergy Consumption Survey (RECS) provides a consise breakdown
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FIGURE 4. Workflow diagram of cooperative agent strategy

of consumer electric power consumption. Water Heating con-
sumed an estimated 109 billion kWh out of the total 1,139.9 bil-
lion kWh demand by consumers, or approximately 9.1% [19].
Our hypothesis was that by changing the behavior of the water
heater control system we could mitigate peak load conditions.

Based on nominal water heater characteristics from the the
Department of Energy’s 2005 Residential Building Energy Con-
sumption Survey (RECS) a 40 Gallon tank with two 4.5 KW
heating elements was selected for our simulation.

The first law of Thermodynamics, conservation of energy,
provides the basis for calculating the water heater’s load charac-
teristics. Change in enthalpy is energy required to heat the water
to the desired 50C output based on the following equation [20].

∆H = mcp∆T (1)

Where

∆H is change in enthalpy, J
m is the mass of the water, kg
cp is the spectific heat of water at constant pressure, J/mol*K
∆T is the change in temperature, C

For the 160L tank with an incoming water temperature of
10C and outgoing temperature of 50C the change in energy is
approximately 30.8 MJ. Using the tanks’s 4.5 KW heating ele-
ment will take approximately 114 minutes to heat the tank from
an initial state.

The Air Conditioning, Heating, and Refrigeration Institute
provides guidelines on nominal hot water usage based on activity
[21]. The standard shower consumes 12 gallons of hot water,
which in turn requires 9.6 MJ of energy to restore the tank to it’s
heated condition, or 35.6 minutes to return a fully heated state.
Or in otherwords, if the shower lasted 5 minutes, during that time
the tank experienced a loss of energy at the rate of approximately
32KW.

FIGURE 5. Comparison of Global, Individual, Coooperative Strate-
gies

Simulation Setup
Although setup to run multiple substations at a time, they

currently operate independently so experimental runs were done
with a single substation. Runs were done with the substation
having 5 houses. Energy goals of 30, 35, and 45 were used. Each
house has a baseload of 5 kW/s and each water heater consumes
4.5 kW/s when heating water in the tank. Residents took showers
randomly between 6am and 7am with a random duration from
5 to 15 minutes. However, the behavior of the residents were
consistent for each strategy during a run. Worst case for every
system is when there is only enough room in the energy goal to
run one houses water heater.

DISCUSSION OF SIMULATION RESULTS
The cooperative strategy performed in a more stable way

than the other two strategies by avoiding peaks in demand and
periods of inactivity while waiting for conserve signals to ex-
pire. Figure 5 shows a representational snapshot of behavior for
Global Signal, Individual Signal, and Cooperative stragegies the
details of which are discussed below.

Global Signal: This strategy exhibits the behavior that the
SmartGrid is trying to avoid: large initial spikes which trigger a
conserve signal. After the 10 minute wait time, there is again a
spike as all the water heaters turn on again then settle into chaotic
behavior as water heaters decide to honor the signal or not.

Individual Signal: While it still exhibits an initial peak, the
behavior is still much smoother than the global signal. Ticks over
goal is still very high especially when water heaters fall below
their LowWaterMark.

Cooperative: This strategy exhibits stable behavior and
stays at the load goal or below until all water heaters have
recharged themselves.

The model created for this research was not intended to be an
exhaustive recreation of the power grid. Instead, creating a sim-
pler model in a simple ”instant feedback” framework allowed for
easier implementation of conceptual models. The graphical na-
ture of NetLogo also allows these strategies to be demonstrated
to non-experts in an easier-to-understand manner. Also, even
though it is simplified, the system exhibited realistic behavior
observed in more complex simulations and in the real world.
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Goal
En-
ergy

Strategy Peak Energy Ticks
above
goal

Recovery
Time

40 global-signal 64.7 6633.8 11:39

40 individual-signal 58.4 4875.8 14:58

40 cooperative 39.5 0 14:34

45 global-signal 65.6 5058.4 10:18

45 individual-signal 59.3 3974.4 12:58

45 cooperative 44 0 10:33

60 global-signal 64.7 642.4 8:38

60 individual-signal 62 84.6 8:55

60 cooperative 57.5 0 8:29

TABLE 1. Average peak energy use, ticks over load goal, and recov-
ery time for different strategies given a load goal.

CONCLUSION & FUTURE WORK
In this manuscript, we have shown that an intelligent sensor

framework that supports agent-based sensing and control appli-
cations holds a unique promise in optimizing asset efficiencies
and facilitate integration of distributed generation in the power
grid. We have discussed three use cases as examples of what
capabilities the agents provide, as well as presenting our initial
design of the intelligent sensor framework. We have also demon-
strated by means of simulations that the capabilities and coordi-
nation provided by use of agents in the power grid are real and
significant. Now that our simulations have confirmed our initial
hypothesis, in the future we will be working on implementing our
software framework on real power grid hardware and making our
software available to the power grid research community.
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