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Abstract—Real-time computing has traditionally been consid- networks, as well as finer-grained and more dynamic control
ered largely in the context of single-processor and embedded jnto the grid.
systems, and indeed, the termseal-time computing, embedded All of these changes and challenges in the power grid drive

systems, and control systems are often mentioned in closely related th d f h higher levels b tati |
contexts. However, real-time computing in the context of multi- € need for much higher levels obmputational resources

node systems, specifically high-performance, cluster-computing for power grid operations. Some of the computation can be
systems, remains relatively unexplored, largely due to the fact pushed down to smart sensors, such as Phasor Measurement
that until now, there has not been a need for such an environment  Units (PMUs) or other next-generation sensors which cae hav

In this paper, we motivate the need for a cluster computing infras  ya450nable levels of processing power. However, some of the
tructure capable of supporting computation over large datasetsn . ) ; S . .

real-time. Our motivating example is an analytical framework to computa_lthns,_ partlcularly_ floating-point intensive Sl_atu)ns
support the next generation North American power grid, which is  and optimization calculations can be more effectively done
growing both in size and complexity. With streaming sensor data in a centralized manner with respect to a utility or Regional
in the future power grid potentially reaching rates on the order  Balancing Authority (multi-utility regional subdivisiowithin

of terabytes per day, the task of analyzing this data subject to a national grid). Examples of these types of calculations

real-time guarantees becomes a daunting task which will require . . . .
the powegr] of high-performance clustergcomputing capabl?—z of include state estimation ([3], [6], [11], [12], [14], [15higher-

functioning under real-time constraints. In this paper, we discuss Order contingency analysis ([4], [8], [9]), as well as dynam
the need for real-time high-performance cluster computation, state estimation using Kalman filter techniques [10]. In-par

along with our work-in-progress towards an infrastructure which ticular, dynamic state estimation is valuable if the esteda

will ultimately enable such an environment. state can be kept up-to-date as fast as new measurements are
received. If we are using PMUs with a sample rate of 33
|. INTRODUCTION ms, then the computation rate should be a multiple of 33 ms,

within some reasonable tolerance. Preliminary experigtant

Technological changes and external forces are driving maj Regional Balancing Authority-sized electrical system8(1
changes in the way electricity is generated and consumeenerators) using a non-real-time high-performance cdimgpu
Some of these changes include concern for the manner(HPC) cluster indicate an execution time of 80 ms per Kalman
which electricity is generated (nuclear energy and carbofilter time step on an 80-core system, with a total of 16 sesond
emitting sources), as well as major interest in increasitg tto the final solution, and significant variability betweemsu
reliability and efficiency in which power grids are operatedf the application.
However, incorporating new methods of generating elgttric  In order to operate the power grid reliably and with high
which are not as predictable and deterministic as traditiorefficiency in the presence of intermittent energy sources,
methods (i.e. intermittent sources such as solar energy ahd results of these calculations will need to have an effect
wind farms in contrast to coal-fired power plants) is verwithin timeframes as short as a few seconds or fractions
challenging with respect to maintaining reliability and-imthereof, to be able to direct generation resources and reanag
proving efficiency of the grid. Additionally, electrical dds highly variable two-way loads on the power grid. Simulasion
(both industrial and residential consumers alike) arevengl and calculations of these types are best handled by high-
by incorporating localized energy generation technol®gie. performance computing (HPC) platforms (clusters). Howeve
solar panels on roofs, small wind turbines) which createday’s standard HPC platforms and specially their sofwar
the need for two-way power flows between these distributgthcks are not designed to operate ineal-time regime.
energy generators and the rest of the grid. Loads tradlfjonaTheir main target applications are computationally-istea
have been viewed as passive consumers of electricity the flasimulations that have to run fast, but not within tight réede
one-way only (generation to loads). bounds.

Partially as a response to these challenges, the poweWith this in mind, the current work is part of a larger
infrastructure and its underlying operations will be chiaggat research effort at Pacific Northwest National Laboratoryead
a rapid pace due to the integration of sensors, communicatat developing the necessary infrastructure to support a@ HP



cluster environment capable of processing vast amounts asf more concisely,
data— specifically, calculations over streaming sensoa dat z=h(x)+v

(e.g. smart meters and the aforementioned PMUs)— under

hard real-time constraints. As a first step towards this amgi € problgm otate estimationthen, rgd’uces to the problem
tious goal, this paper presents our work-in-progress tdwarofgeneratmg the best guess for the grid's state, givenaigyn
this infrastructure measurements available, and the best guess is interpreted a

that which generates the minimum weighted squared ereor (i.
Il. THE NEED FORREAL-TIME HPC a weightedleast squaresinalysis). At a high level, then, the

As we have already mentioned, the growth in both siZguality of the estimated guess is quantified in terms of a cost
and complexity of the future power grid brings with it newfunction defined in terms of the square of the magnitude of
challenges with respect to the analysis of the vast amouifi€ errof: m o
of data it entails. To give a rough estimate of the scale of C(%) = Z (zi = hi(%))
this data, the amount of data streaming from a future phasor P R;

Eﬁssteesminwllfgrtﬁ :r?]AeLiicE: g:;h .Of 50,000 transmssmn-lev\e/z\}QereR is defined as the expected value of the square of the
, pling at 30 samples per second .

would equate to roughly 4TB per day of streaming PM '

datd. A quick estimation of the amount of smart meter data

gives similar numbers: supposing that with a smart meter @ine goal, then, becomes to find the valuexofvhich mini-

each home, each meter sending one four-byte measuremmgiresC(x), which occurs when

per second yields roughly an additional 350GB of streaming 9

sensor data per million homes d&ilywhile these numbers g(z) = =

may be generous upper bounds, they give an idea of the scale 0%

of the amount of streaming data which will need to be analyzadhere H (%) = -2 h(%). Without delving into much more

in real time. detail (as the specifics can be found in [1]), typical state es

We target three kernels in particular: static state estamat mation methods currently solve Equation 1 by approximating
([3], [14], [15]), dynamic state estimation ([6], [11], [D2 ¢(x) using its Taylor series expansion, running iterativelyilunt
and contingency analysis ([4], [8], [9]). In particularede an acceptable convergance is achieved.
algorithms share the common attributes of being heavily This is but one example of a number of data-intensive,
dependent on linear algebra operations computed over déngar-algebra centered operations which are central eepo
compiled from sensors distributed over the power grid. grid operation,; it bears mentioning that these types of asmp

As a motivating example, we consider one of these applations that we consider are typical power-grid analysiaéis
ations in more detail, namely the problem a@fnamic state which are run on current power grid systems, albeit on a much
estimationin the North American power grid. Briefly, ttetate smaller scale and not in real-time.
of a power grid is defined as a vector of values consisting of

R; = E[v]]

Cx)=-HT'%)R 'z-hx)]=0 (1)

values including the complex voltage magnitude and angle at Il INFRASTRUCTURE
each bus: As mentioned in Section |, this paper presents our work-
X = [01, 00y O, V1. V0] in-progress towards our envisioned infrastructure. Whits t

] ) {in mind, we first describe the architecture as a whole, as we
However, due to the size and complexity of the power gridyision it, followed by a discussion of our progress to date

generally speaking, the precise state of the grid is notthyre o targeted infrastructure ultimately consists of a modi-
observable, and instead, the state must be inferred from ag&y variant of the traditional data-parallel cluster cartipg

of measurements taken at various points within the grid. |joqel, with a single head (access) node connected to meultipl
addition, these measurements aogsy, in the sense that SOMecompute nodes via a high-speed Infiniband network.

jiter and error is invariably mixed with the measurements pecq| that the basic model of computation involves three
taken from the grid. This estimation of the power gndsestatphases of computation: first, the data comprising the proble

is then used to gauge the overall health of the power gritly,t must be divided into chunks, and each of these chunks
The general approach commonly taken today ([1]) modelsid@ gistributed from the head node to each of the compute

measurement; as a set of measuremertis taken over the ,4es. Secondly, the compute nodes must locally compute the

system statex, with the addition of some noise;: solutions to each of their subproblems, and thirdly, thelltes
21 hi(x1,x9,...2p) U1 of each of these subproblems must be aggregated to form the
2 ho(x1,x9,...20) Vg overall problem solution.

S B o To adapt this model to operate in real-time, a few key
Zn hn(z1, T2, ...T0) Up, modifications must be made. To enable the compute nodes’
local computations (the second of the three phases listed
lNPJVIU *NphasorTate: betes -86400 d
4TB Shats over a variable (e.ck) denotefitted or modeledvalues; so in this
24B - 864002< . 105 homes~ 350G B per million homes case,C(x) denotes the cost of thmodeledstate.

sec
day

s€¢ — 50000-8-30-4-86400 ~



above) to run in real time, each node will need to rusecondly, to modify this code base to use this infrastractur
an real-time operating system (e.g. Xenomai [7]), with th® yield results in real-time.
local computations carried out in the OS’ real-time space. There are, of course, some technical hurdles to overcome.
To enable the data transport (the first and third of the thr€er instance, there is the task of integrating code, inalydi
aforementioned phases) to operate in real time, we requinéiniband network drivers and the state estimation appitica
the message transport mechanisms themselves (e.g., &mithibcode, into Xenomai’s real-time space. Doing so, of course, i
drivers) to run in the operating system’s real-time spase, a prerequisite to enabling both the application itself, all as
well as some method of guaranteeing an upper time-boutie transfer of data within the network, to run with guaradte
for the transport of the messages themselves. Figure 1 shaypper time constraints.
the envisioned infrastructure in more detail. Aside from these more pragmatic issues, however, we list
Recalling the raison détre for the envisioned here some of the more theoretical challenges we are prgsentl
infrastructure— namely, support for the real-time analysi addressing, in the hopes of generating fruitful discussiod
large-scale streaming sensor data from the future powe+gri feedback from the RTSS-WIP community. Presently, our work
helps to shape the associated software stack. Specificallyfocused on real-time aspects of the two areasnegsage
source code at the application level will need access topassingandlocal computation as well as a model-checking
mathematical library capable of performing the requisittamework to prove correctness with respect to real-time
routines with a known, guaranteed, worst-case upper tirhehavior in our infrastructure.
bound. In turn, these libraries will need a transport layer First, we have a basic need to guarantee a worst-case
capable of distributing data throughout the cluster, againessage transmission time over the cluster's network, but
within a guaranteed timeframe. In addition, the same libsar doing so raises some important questions. Is it sufficient
will perform their localized computation, this time withpgr to use Infiniband’s native QoS mechanism (i.e., VL to SL
time bounds guaranteed by the underlying RTOS installed orappings), combined with the integration of the underlying
each compute node. network drivers into the operating system’s real-time spac
The result can be viewed in terms of a protocol stack (Fige compute worst-case message transmission time? Or is a
ure 2), with the Infiniband transport layer as the bottommoseparate traffic prioritization layer necessary? The ehdsc
layer, followed by a real-time Infiniband layer to allow fornot entirely clear; using Infiniband’s native mechanismegiv
the internode transport of data in real-time, followed bg tha clean, abstract solution, but there are a number of points
real-time linear algebra libraries to allow for the compiata which raise some concern when taken in the context of strict
of large-scale linear algebra operations in real-timdpfoéd real-time guarantees.
finally by the application layer to compute power grid anelys For example, consider Infiniband’s credit-based flow cdntro

kernels on large-scale streaming data in real time: mechanism, in which credits are issued from the receiving
end of a link to the sending end, and only when sufficient
Application credits are available are packets sent over the link; in this
RT Linear Algebra manner, packets are only sent when space is available in
RT Infiniband the receiving buffer. While this eliminates the possibilty o
Infiniband dropped packets due to insufficient buffer space, it raikes t
possibility of restricting flow unnecessarily when mulépfLs
Fig. 2. Real-time software stack. are considered— a potential issue of concern in the confext o

real-time applications.

Another consideration is from the perspective of the appli-
cation level: packets can only specify the desired senécel|

As HPC clusters have, to our knowledge, never been useot the desired virtual lane. In other words, an applicatias
to perform real-time computation, our work to date has be@wo way of requesting a specific fraction of bandwidth on the
focused primarily on developing the requisite infrastuwet underlying link; it can only request a service level, leayvin
components. Our development system consists of a five ndendwidth allocation to the whim of the subnet manager,
cluster— four compute nodes, one head node, each nddeher necessitating a tight coupling between the appdina
powered by 2.66 GHz Quad-core Intel chips, each with 12Gdata transport middleware, and the subnet manager. In the
RAM. For a real-time operating system, we have installédterest of modularity and encapsulation, a separate draffi
Xenomai [7] on the half of the compute nodes. The remainirgioritization layer may be preferable.
nodes run standard Red Hat Linux, yielding a configuration Finally, the supported SL and VL configurations and
in which half of our nodes run a real-time operating systeropnfiguration methods vary significatly between Infiniband
and the other half serve as a non-real-time control group. vendors— for example, some switches may support the full

Our target application is a dynamic state estimation kernehaximum of 15 VLs, while others may support 7 VLs,
described in Section Il, a version of which currently runs owhile others may only support 2. Subnet managers come
a standard cluster. Our immediate task, then, is twofold+# both software and hardware varieties, and consequently,
first, to provide the underlying real-time infrastructuamnd the methods of SL and VL configuration vary accordingly,

IV. OPEN QUESTIONS
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Fig. 1.

Envisioned Infrastructure: As with the traditior@ilister computing model, a head node is connected to a set ofutempdes via a high-speed

Infiniband network. There are a few key modifications. Firstcrenode must now run an instance of a RTOS. Secondly, the rietwast be capable of

moving data between nodes within a guaranteed worst-casr tipge bound (i.e.,

potentially complicating the task of recomputing worssea
execution time significantly when hardware modifications ar 1
made. By abstracting the channel and bandwidth specificatio
at a higher level, and mapping the underlying traffic to alsing [2]
VL, we would enable portability and encapsulation across an
combination of hardware and configuration systems.

A related issue is the question of how to integrate real-time
constraint requests into the data transport APl. An obvioug]
route, and that which we are pursuing, is to extend a subset of
MPI (Message Passing Interface) with real-time parameters
This task yields many challenges as well. For instance, hoys
should this extended MPI integrate with either Infiniband’s
native QoS mechanism or the aforementioned prioritization
API? At the system level, how can we manage the complep
relationship betweerji) MPI message sizegji) Infiniband
link-level QoS parameters, an@ii) compute nodes’ local |,
computation time, all subject to the system-wide real-time
constraints? (8]

At the node level, we are tasked with assuring that local
computation completes within the required time limit. While
traditional real-time theory (e.g. static and dynamic gsia) (9]
gives us a good foundation towards this goal, the addeg
dimension of the data-parallel computing model introduces
corresponding challenges. To give a few examples, the @atliC!
of the relationship between local (per-node) problem chunk
sizes, local network QoS parameters, and the overall system
time constraints is not immediately obvious. What are tHe!]
tradeoffs as these parameters change relative to one anothe
and is there a set of optimal values? The answers to thés®d
and other questions will prove to be of great interest going
forward. [13]

Finally, to provide any sort of guarantees regarding ad-
herence to real-time constraints, we must provide a model
checker for our model of computation. While there has begm
ample work in the area of model checking for real-time
frameworks ([2], [5], [13]), the question of how to accouat f [15]
the unique challenges of our infrastructure (e.g. the ngessa
passing issues discussed above) remains a most importhnt an
interesting challenge of immediate importance.

in real time).
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