
Towards a Real-Time Cluster Computing
Infrastructure

Peter Hui Satish Chikkagoudar Daniel Chavarrı́a-Miranda Mark Johnston

Pacific Northwest National Laboratory
Richland, WA 99352

{peter.hui, satish.chikkagoudar, daniel.chavarria, mark.johnston}@pnl.gov

Abstract—Real-time computing has traditionally been consid-
ered largely in the context of single-processor and embedded
systems, and indeed, the termsreal-time computing, embedded
systems, and control systems are often mentioned in closely related
contexts. However, real-time computing in the context of multi-
node systems, specifically high-performance, cluster-computing
systems, remains relatively unexplored, largely due to the fact
that until now, there has not been a need for such an environment.
In this paper, we motivate the need for a cluster computing infras-
tructure capable of supporting computation over large datasetsin
real-time. Our motivating example is an analytical framework to
support the next generation North American power grid, which is
growing both in size and complexity. With streaming sensor data
in the future power grid potentially reaching rates on the order
of terabytes per day, the task of analyzing this data subject to
real-time guarantees becomes a daunting task which will require
the power of high-performance cluster computing capable of
functioning under real-time constraints. In this paper, we discuss
the need for real-time high-performance cluster computation,
along with our work-in-progress towards an infrastructure which
will ultimately enable such an environment.

I. I NTRODUCTION

Technological changes and external forces are driving major
changes in the way electricity is generated and consumed.
Some of these changes include concern for the manner in
which electricity is generated (nuclear energy and carbon-
emitting sources), as well as major interest in increasing the
reliability and efficiency in which power grids are operated.
However, incorporating new methods of generating electricity
which are not as predictable and deterministic as traditional
methods (i.e. intermittent sources such as solar energy and
wind farms in contrast to coal-fired power plants) is very
challenging with respect to maintaining reliability and im-
proving efficiency of the grid. Additionally, electrical loads
(both industrial and residential consumers alike) are evolving
by incorporating localized energy generation technologies (i.e.
solar panels on roofs, small wind turbines) which create
the need for two-way power flows between these distributed
energy generators and the rest of the grid. Loads traditionally
have been viewed as passive consumers of electricity that flows
one-way only (generation to loads).

Partially as a response to these challenges, the power
infrastructure and its underlying operations will be changing at
a rapid pace due to the integration of sensors, communication

networks, as well as finer-grained and more dynamic control
into the grid.

All of these changes and challenges in the power grid drive
the need for much higher levels ofcomputational resources
for power grid operations. Some of the computation can be
pushed down to smart sensors, such as Phasor Measurement
Units (PMUs) or other next-generation sensors which can have
reasonable levels of processing power. However, some of the
computations, particularly floating-point intensive simulations
and optimization calculations can be more effectively done
in a centralized manner with respect to a utility or Regional
Balancing Authority (multi-utility regional subdivisionwithin
a national grid). Examples of these types of calculations
include state estimation ([3], [6], [11], [12], [14], [15]), higher-
order contingency analysis ([4], [8], [9]), as well as dynamic
state estimation using Kalman filter techniques [10]. In par-
ticular, dynamic state estimation is valuable if the estimated
state can be kept up-to-date as fast as new measurements are
received. If we are using PMUs with a sample rate of 33
ms, then the computation rate should be a multiple of 33 ms,
within some reasonable tolerance. Preliminary experiments for
a Regional Balancing Authority-sized electrical system (148
generators) using a non-real-time high-performance computing
(HPC) cluster indicate an execution time of 80 ms per Kalman
filter time step on an 80-core system, with a total of 16 seconds
to the final solution, and significant variability between runs
of the application.

In order to operate the power grid reliably and with high
efficiency in the presence of intermittent energy sources,
the results of these calculations will need to have an effect
within timeframes as short as a few seconds or fractions
thereof, to be able to direct generation resources and manage
highly variable two-way loads on the power grid. Simulations
and calculations of these types are best handled by high-
performance computing (HPC) platforms (clusters). However,
today’s standard HPC platforms and specially their software
stacks are not designed to operate in areal-time regime.
Their main target applications are computationally-intensive
simulations that have to run fast, but not within tight real-time
bounds.

With this in mind, the current work is part of a larger
research effort at Pacific Northwest National Laboratory aimed
at developing the necessary infrastructure to support an HPC



cluster environment capable of processing vast amounts of
data— specifically, calculations over streaming sensor data
(e.g. smart meters and the aforementioned PMUs)— under
hard real-time constraints. As a first step towards this ambi-
tious goal, this paper presents our work-in-progress towards
this infrastructure.

II. T HE NEED FORREAL-TIME HPC

As we have already mentioned, the growth in both size
and complexity of the future power grid brings with it new
challenges with respect to the analysis of the vast amounts
of data it entails. To give a rough estimate of the scale of
this data, the amount of data streaming from a future phasor
system with a PMU at each of 50,000 transmission-level
buses in North America, sampling at 30 samples per second
would equate to roughly 4TB per day of streaming PMU
data1. A quick estimation of the amount of smart meter data
gives similar numbers: supposing that with a smart meter on
each home, each meter sending one four-byte measurement
per second yields roughly an additional 350GB of streaming
sensor data per million homes daily2. While these numbers
may be generous upper bounds, they give an idea of the scale
of the amount of streaming data which will need to be analyzed
in real time.

We target three kernels in particular: static state estimation
([3], [14], [15]), dynamic state estimation ([6], [11], [12]),
and contingency analysis ([4], [8], [9]). In particular, these
algorithms share the common attributes of being heavily
dependent on linear algebra operations computed over data
compiled from sensors distributed over the power grid.

As a motivating example, we consider one of these appli-
ations in more detail, namely the problem ofdynamic state
estimationin the North American power grid. Briefly, thestate
of a power grid is defined as a vector of values consisting of
values including the complex voltage magnitude and angle at
each bus:

x = [δ1, ..., δn, V1...Vn]

However, due to the size and complexity of the power grid,
generally speaking, the precise state of the grid is not directly
observable, and instead, the state must be inferred from a set
of measurements taken at various points within the grid. In
addition, these measurements arenoisy, in the sense that some
jitter and error is invariably mixed with the measurements
taken from the grid. This estimation of the power grid’s state
is then used to gauge the overall health of the power grid.
The general approach commonly taken today ([1]) models a
measurementzi as a set of measurementshi taken over the
system statex, with the addition of some noisevi:

z =









z1
z2
...

zn









=









h1(x1, x2, ...xn)
h2(x1, x2, ...xn)

...

hn(x1, x2, ...xn)









+









v1
v2
...

vn









1NPMU ·Nphasor ·rate·Nbytes ·86400
sec
day

= 50000·8·30·4·86400 ≈

4TB
24B · 86400 sec

day
· 106 homes≈ 350GB per million homes

or, more concisely,
z = h(x) + v

The problem ofstate estimation, then, reduces to the problem
of generating the best guess for the grid’s state, given the noisy
measurements available, and the best guess is interpreted as
that which generates the minimum weighted squared error (i.e.,
a weightedleast squaresanalysis). At a high level, then, the
quality of the estimated guess is quantified in terms of a cost
function defined in terms of the square of the magnitude of
the error3:

C(x̂) =
m
∑

i=1

(zi − hi(x̂))
2

Ri

whereR is defined as the expected value of the square of the
error:

Ri = E[v2i ]

The goal, then, becomes to find the value ofx̂ which mini-
mizesC(x̂), which occurs when

g(x) =
∂

∂x̂
C(x̂) = −HT (x̂)R−1[z − h(x̂)] = 0 (1)

where H(x̂) = ∂

∂x̂
h(x̂). Without delving into much more

detail (as the specifics can be found in [1]), typical state esti-
mation methods currently solve Equation 1 by approximating
g(x) using its Taylor series expansion, running iteratively until
an acceptable convergance is achieved.

This is but one example of a number of data-intensive,
linear-algebra centered operations which are central to power
grid operation; it bears mentioning that these types of compu-
tations that we consider are typical power-grid analysis kernels
which are run on current power grid systems, albeit on a much
smaller scale and not in real-time.

III. I NFRASTRUCTURE

As mentioned in Section I, this paper presents our work-
in-progress towards our envisioned infrastructure. With this
in mind, we first describe the architecture as a whole, as we
envision it, followed by a discussion of our progress to date.

Our targeted infrastructure ultimately consists of a modi-
fied variant of the traditional, data-parallel cluster computing
model, with a single head (access) node connected to multiple
compute nodes via a high-speed Infiniband network.

Recall that the basic model of computation involves three
phases of computation: first, the data comprising the problem
input must be divided into chunks, and each of these chunks
is distributed from the head node to each of the compute
nodes. Secondly, the compute nodes must locally compute the
solutions to each of their subproblems, and thirdly, the results
of each of these subproblems must be aggregated to form the
overall problem solution.

To adapt this model to operate in real-time, a few key
modifications must be made. To enable the compute nodes’
local computations (the second of the three phases listed

3hats over a variable (e.g.̂x) denotefitted or modeledvalues; so in this
case,C(x̂) denotes the cost of themodeledstate.



above) to run in real time, each node will need to run
an real-time operating system (e.g. Xenomai [7]), with the
local computations carried out in the OS’ real-time space.
To enable the data transport (the first and third of the three
aforementioned phases) to operate in real time, we require
the message transport mechanisms themselves (e.g., Infiniband
drivers) to run in the operating system’s real-time space, as
well as some method of guaranteeing an upper time-bound
for the transport of the messages themselves. Figure 1 shows
the envisioned infrastructure in more detail.

Recalling the raison d’̂etre for the envisioned
infrastructure— namely, support for the real-time analysis of
large-scale streaming sensor data from the future power grid—
helps to shape the associated software stack. Specifically,
source code at the application level will need access to a
mathematical library capable of performing the requisite
routines with a known, guaranteed, worst-case upper time
bound. In turn, these libraries will need a transport layer
capable of distributing data throughout the cluster, again
within a guaranteed timeframe. In addition, the same libraries
will perform their localized computation, this time with upper
time bounds guaranteed by the underlying RTOS installed on
each compute node.

The result can be viewed in terms of a protocol stack (Fig-
ure 2), with the Infiniband transport layer as the bottommost
layer, followed by a real-time Infiniband layer to allow for
the internode transport of data in real-time, followed by the
real-time linear algebra libraries to allow for the computation
of large-scale linear algebra operations in real-time, followed
finally by the application layer to compute power grid analysis
kernels on large-scale streaming data in real time:

Application
RT Linear Algebra

RT Infiniband
Infiniband

Fig. 2. Real-time software stack.

IV. OPEN QUESTIONS

As HPC clusters have, to our knowledge, never been used
to perform real-time computation, our work to date has been
focused primarily on developing the requisite infrastructure
components. Our development system consists of a five node
cluster— four compute nodes, one head node, each node
powered by 2.66 GHz Quad-core Intel chips, each with 12GB
RAM. For a real-time operating system, we have installed
Xenomai [7] on the half of the compute nodes. The remaining
nodes run standard Red Hat Linux, yielding a configuration
in which half of our nodes run a real-time operating system,
and the other half serve as a non-real-time control group.

Our target application is a dynamic state estimation kernel,
described in Section II, a version of which currently runs on
a standard cluster. Our immediate task, then, is twofold—
first, to provide the underlying real-time infrastructure,and

secondly, to modify this code base to use this infrastructure
to yield results in real-time.

There are, of course, some technical hurdles to overcome.
For instance, there is the task of integrating code, including
Infiniband network drivers and the state estimation application
code, into Xenomai’s real-time space. Doing so, of course, is
a prerequisite to enabling both the application itself, as well as
the transfer of data within the network, to run with guaranteed
upper time constraints.

Aside from these more pragmatic issues, however, we list
here some of the more theoretical challenges we are presently
addressing, in the hopes of generating fruitful discussionand
feedback from the RTSS-WIP community. Presently, our work
is focused on real-time aspects of the two areas ofmessage
passingand local computation, as well as a model-checking
framework to prove correctness with respect to real-time
behavior in our infrastructure.

First, we have a basic need to guarantee a worst-case
message transmission time over the cluster’s network, but
doing so raises some important questions. Is it sufficient
to use Infiniband’s native QoS mechanism (i.e., VL to SL
mappings), combined with the integration of the underlying
network drivers into the operating system’s real-time space,
to compute worst-case message transmission time? Or is a
separate traffic prioritization layer necessary? The choice is
not entirely clear; using Infiniband’s native mechanism gives
a clean, abstract solution, but there are a number of points
which raise some concern when taken in the context of strict
real-time guarantees.

For example, consider Infiniband’s credit-based flow control
mechanism, in which credits are issued from the receiving
end of a link to the sending end, and only when sufficient
credits are available are packets sent over the link; in this
manner, packets are only sent when space is available in
the receiving buffer. While this eliminates the possibilty of
dropped packets due to insufficient buffer space, it raises the
possibility of restricting flow unnecessarily when multiple VLs
are considered— a potential issue of concern in the context of
real-time applications.

Another consideration is from the perspective of the appli-
cation level: packets can only specify the desired service level,
not the desired virtual lane. In other words, an applicationhas
no way of requesting a specific fraction of bandwidth on the
underlying link; it can only request a service level, leaving
bandwidth allocation to the whim of the subnet manager,
further necessitating a tight coupling between the application,
data transport middleware, and the subnet manager. In the
interest of modularity and encapsulation, a separate traffic
prioritization layer may be preferable.

Finally, the supported SL and VL configurations and
configuration methods vary significatly between Infiniband
vendors— for example, some switches may support the full
maximum of 15 VLs, while others may support 7 VLs,
while others may only support 2. Subnet managers come
in both software and hardware varieties, and consequently,
the methods of SL and VL configuration vary accordingly,



Fig. 1. Envisioned Infrastructure: As with the traditionalcluster computing model, a head node is connected to a set of compute nodes via a high-speed
Infiniband network. There are a few key modifications. First, each node must now run an instance of a RTOS. Secondly, the network must be capable of
moving data between nodes within a guaranteed worst-case upper time bound (i.e., in real time).

potentially complicating the task of recomputing worst-case
execution time significantly when hardware modifications are
made. By abstracting the channel and bandwidth specification
at a higher level, and mapping the underlying traffic to a single
VL, we would enable portability and encapsulation across any
combination of hardware and configuration systems.

A related issue is the question of how to integrate real-time
constraint requests into the data transport API. An obvious
route, and that which we are pursuing, is to extend a subset of
MPI (Message Passing Interface) with real-time parameters.
This task yields many challenges as well. For instance, how
should this extended MPI integrate with either Infiniband’s
native QoS mechanism or the aforementioned prioritization
API? At the system level, how can we manage the complex
relationship between(i) MPI message sizes,(ii) Infiniband
link-level QoS parameters, and(iii) compute nodes’ local
computation time, all subject to the system-wide real-time
constraints?

At the node level, we are tasked with assuring that local
computation completes within the required time limit. While
traditional real-time theory (e.g. static and dynamic analysis)
gives us a good foundation towards this goal, the added
dimension of the data-parallel computing model introduces
corresponding challenges. To give a few examples, the nature
of the relationship between local (per-node) problem chunk
sizes, local network QoS parameters, and the overall system’s
time constraints is not immediately obvious. What are the
tradeoffs as these parameters change relative to one another,
and is there a set of optimal values? The answers to these
and other questions will prove to be of great interest going
forward.

Finally, to provide any sort of guarantees regarding ad-
herence to real-time constraints, we must provide a model
checker for our model of computation. While there has been
ample work in the area of model checking for real-time
frameworks ([2], [5], [13]), the question of how to account for
the unique challenges of our infrastructure (e.g. the message
passing issues discussed above) remains a most important and
interesting challenge of immediate importance.

REFERENCES

[1] Ali Abur and Antonio Gomez Exposito.Power System State Estimation:
Theory and Implementation. Marcel Dekker, Inc, 2004.

[2] Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical
Computer Science, 126:183–235, 1994.

[3] Fang Chen, Xueshan Han, Zhiyuan Pan, and Li Han. State Estimation
Model and Algorithm Including PMU. InElectric Utility Deregulation
and Restructuring and Power Technologies, 2008. DRPT 2008.Third
International Conference on, pages 1097 –1102, april 2008.

[4] Yousu Chen, Zhenyu Huang, and D. Chavarria-Miranda. Performance
evaluation of counter-based dynamic load balancing schemes for massive
contingency analysis with different computing environments. In Power
and Energy Society General Meeting, 2010 IEEE, pages 1 –6, july 2010.

[5] J. Froessl, Th. Kropf, and J. Gerlach. An efficient algorithm for real-
time symbolic model checking. InProceedings of the 1996 European
conference on Design and Test, EDTC ’96, pages 15–, Washington, DC,
USA, 1996. IEEE Computer Society.

[6] Wenzhong Gao and Shaobu Wang. On-line dynamic state estimation of
power systems. InNorth American Power Symposium (NAPS), 2010,
pages 1 –6, sept. 2010.

[7] P. Gerum. The Xenomai Project. Implementing a RTOS emulation
framework on GNU/Linux. InThird Real-Time Linux Workshop, 2001.

[8] I. Gorton, Zhenyu Huang, Yousu Chen, B. Kalahar, Shuangshuang Jin,
D. Chavarria-Miranda, D. Baxter, and J. Feo. A high-performance hybrid
computing approach to massive contingency analysis in the power grid.
In e-Science, 2009. e-Science ’09. Fifth IEEE International Conference
on, pages 277 –283, dec. 2009.

[9] Zhenyu Huang, Yousu Chen, and J. Nieplocha. Massive contingency
analysis with high performance computing. InPower Energy Society
General Meeting, 2009. PES ’09. IEEE, pages 1 –8, july 2009.

[10] Zhenyu Huang, Pengwei Du, D. Kosterev, and Bo Yang. Application
of extended Kalman filter techniques for dynamic model parameter
calibration. InPower Energy Society General Meeting, 2009. PES ’09.
IEEE, pages 1 –8, july 2009.

[11] A. Jain and N.R. Shivakumar. Phasor measurements in dynamicstate
estimation of power systems. InTENCON 2008 - 2008 IEEE Region
10 Conference, pages 1 –6, nov. 2008.

[12] A. Jain and N.R. Shivakumar. Power system tracking and dynamic state
estimation. InPower Systems Conference and Exposition, 2009. PSCE
’09. IEEE/PES, pages 1 –8, march 2009.

[13] Georgios Logothetis. Forward symbolic model checking for real time
systems. InProceedings of the 2005 Asia and South Pacific Design
Automation Conference, ASP-DAC ’05, pages 1043–1046, New York,
NY, USA, 2005. ACM.

[14] F.C. Schweppe and J. Wildes. Power system static-stateestimation, part
i: Exact model.Power Apparatus and Systems, IEEE Transactions on,
PAS-89(1):120 –125, jan. 1970.

[15] Hongga Zhao. A new state estimation model of utilizing pmu
measurements. InPower System Technology, 2006. PowerCon 2006.
International Conference on, pages 1 –5, oct. 2006.


