
Towards a Scalable and Reliable Real Time In-Network Data Analysis
Infrastructure

Selim Ciraci, Jian Yin∗

Pacific Northwest National Laboratory

Richland, WA USA

Abstract

The smart grid applications requires real time analysis, re-
sponse within the order of milliseconds and high-reliability
because of the mission critical structure of the power grid
system. The only way to satisfy these requirements is in-
network data analysis and built-in redundancy routing for
failures. To achieve this, we propose a data dissemination
system that builds routes using network flow algorithms,
have in network processing of the data and utilize data en-
coding to cope with high latencies.
Keywords: Data dissemination systems, network flow,
maximum flow.

Index Terms: D.2.11 [Software]: Software Engineering—
Software Architectures;

1 Introduction

The smart grid control applications are required to conduct
real time analysis on power data and respond within the
order of milliseconds because of the mission critical structure
of the power grid system [4]. These applications rely on
the data collected from millions of sensors; hence, this data
needs to be disseminated reliabily in realtime and must be
adapted (e.g. post-processed, reduced rate) to the needs of
the control application.

Current data dissemination systems require each inter-
mediate broker to route messages according to subscription
matching, leave all post-processing to the subscriber [1, 6]
and calculate alternative routes [5] when a failure is detected.
These, however, hamper the applicability of the existing ap-
proaches to the smart grid systems: leaving post-processing
of data from millions of sensors would consume many re-
sources from the control application hampering the scalabil-
ity of the system, and calculating alternatives when a link
fails induces additional delays in the delivery hampering the
realtime and reliable delivery of the data.

We propose a data dissemination system for smart grid
application that utilizes flow-based routing scheme with in-
network processing and Reed-Solomon (RS) [2] encoding.
Hereby, the subscriber (i.e. the control application) sends a
subscription with the type of post-processing required. The
intermediate brokers promote themselves as processing nodes
if they have enough resources and can execute the required
post-processing; this promotion is disseminated to the net-
work. A publisher (i.e. a sensor) encodes the data with
error correction bits and, with network flow algorithms [3],
calculates the flows to the processing nodes. Similarly, after
matching and post-processing, a processing node calculates
the flow to the subscriber. The flows allocate capacities from

∗email: {selim.ciraci, jian.yin}@pnnl.gov

Figure 1: The maximum flow from vertex S to vertex T

links and they contains redundant paths. The data is di-
vided into chunks and these chunks are pushed to the links
according to allocated capacities. The use of encoding al-
lows a subscriber/processing node receives the partial data,
it can still reconstruct the full version making the system
tolerant to links with high latencies.

2 Flow-based Routing

In flow algorithms [3], the network is viewed as a graph
G = (V,E) with each edge (u, v) ∈ E having a non-negative
capacity c(u, v). The network also has two special vertices,
namely the source S and the sink T . A flow is a function f ,
such that f(u, v) ≤ c(u, v) and the flow in one direction is
equal to the flow in the opposite direction. The maximum
flow is a flow from S to T such that there is no path from S
to T without allocated capacities. Figure 1 illustrates a net-
work and the flow from S to T . This flow is also maximum
because we cannot locate a path between these nodes with
available capacity.

In the proposed routing scheme, the data is padded with
error control bits and a maximum flow of the data with
the pad is calculated. We use the maximum flow algorithm
Push-Relabel, which has a run-time less than O(|V |3). The
size of the padding is arranged such that the subscriber can
reconstruct the data despite of l link failures (or delays in
these links). For example, the flow in Figure 1 has two paths
and if we assume the padding is constructed to tolerate a
failure in link with capacity 1, then the data delivery is not
disturbed (or delayed) even though the links (a, T) or (a, b)
fails.

The subscription messages are flooded to the network; a
subscription message contains the required post-processing
and the link failure tolerance in addition to the subscribers
interest. A broker receiving a subscription message decides
if it can be the processing node for the message based on
the availability of the required post-processing library and
system resources. A processing node is the broker respon-
sible for matching and adapting the published data to the
subscriptions. If the broker promotes itself as a processing
node, it lets other brokers know about it this by flooding a
processing node selected message. This message has the same
link failure tolerance as the original subscription message .

A publisher sending m data items, first calculates maxi-
mum flows to the processing nodes; these flows allocate ca-

135

IEEE Symposium on Large Data Analysis and Visualization
October 23 - 24, Providence, Rhode Island, USA
978-1-4673-0155-8/11/$26.00 ©2011 IEEE

B
L1: 3/10

L2: 1/2

L3: 2/2
(i+1).1,i.1,i.3,i.2

1.1,1.3

(i+1).1,i.2

Figure 2: Routing of chunks at a broker

pacities enough to carry a data item with the error control
bits. If such a flow cannot be calculated than the network
does not have enough capacity to achieve the link failure
tolerance required by the subscriber; hence, the data is not
sent to that processor. If the flow is calculated, then, the
publisher sends a capacity allocate message to establish the
flow; this message includes the allocated capacity for each
link in the flow. Once the capacities at the intermediate bro-
kers are allocated, each data item is encoded (padded with
error control bits) and is divided into equal sized chunks.
These chunks are pushed through the calculated flow.

A processing node receiving the data items, first matches
them to subscription. If they match, they are post-processed
and a flow that can carry the processed data with error con-
trol to the subscriber is calculated.

Encoding of data: RS encoding is a popular light weight
encoding algorithm for error correction; more importantly,
the existence of highly efficient parallel algorithms [2] makes
it a good candidate to be employed in our scheme. With RS
encoding, a data of size d ∗ s (s is the symbol length in bits)
is padded with x ∗ s error correction bits and disseminated
to the network. To achieve the link tolerance l requested
by the subscriber, we limit the maximum capacity that can
be allocated from a link to (x ∗ s)/l. This is because to
reconstruct the data, we can lose at most x ∗ s bits and,
hence, when l links fail they can take out x ∗ s bits.

Routing data items at brokers: A broker that is not a
processing node, only keeps track of the capacity usage at it’s
links. The capacity of a link can be, for example, set to data
size the link can carry. When the broker receives a capacity
allocate message, it reduces its links available capacity by
the allocated amount.

A broker forwards incoming chunks belonging to a data
item to a link until the total size of the forwarded chunks
are equal to the allocated capacity from this link. Then, the
incoming chunks are forward to the next link with available
capacity. This is exemplified in Figure 2; the chunks 1, 3,
2 of data item i are forwarded from link L1 to the broker.
Because only a capacity of 1 is allocated from link L2, the
first arriving chunk, chunk 2, is forwarded to this link and
no other chunk is forwarded. The remaining chunks are for-
warded to the link L3. Note that the chunk 1 belonging to
data item i+1 is again forwarded from link L2 as this chunk
belongs to another data item.

Capacity allocation: To calculate the maximum flow,
the processing nodes and the publishers need an up-to-date
knowledge about the available capacities on the network.
Such a recent view is established during the routing of the
subscription and processing node selected messages. These
messages include a route history table consisting of the link
and the link capacity pair. Before flooding these messages,
a broker inserts the available capacities on it’s links to the
route history table.

3 Preliminary Evaluation

One of the main advantages of our approach is that the data
delivery is not affected by link delays (or high latencies). To
test this, we formed a broker network in grid topology with
two publishers and one subscriber. We used two routing

Table 1: The time it takes to disseminate a data item with
alternative- and flow-based routing

Alternative-based routing Flow-based routing

Path Length Time (ms) Grid Size Time (ms)
4 121 4-2 51
5 138 4-3 56
6 143 4-4 69

schemes: the alternative based routing [5] which calculates
one path and switches to another if it detects a link failure
and flow based-routing. One of the brokers in the flow or
the path is programmed to delay the forwarding for 100 mil-
liseconds. The publishers are programmed to send 100 data
items with 60-bytes in size (RS encoded added 40-bytes)
with 15 milliseconds delay in sending two consecutive data
items.

Table 1 presents the results from this experiment. As a
delay is not a failure, the alternative-based routing scheme
did not switch the routing paths and delayed the delivery of
the data. The flow-based routing, on the other hand, is not
affected by delay. These result hint that flow-based routing
can cope with high-latencies without effecting the delivery
time.

4 Conclusion

To cope with realtime reliable data delivery and data post-
processing requirements of the smart grid application, this
paper presented a data dissemination system utilizing flow-
based routing with in-network processing and RS encoding.
The subscription messages in this system contains the de-
sired post-processing and link failure tolerance in addition
to interest of the subscribers. Depending on the availability
of software library and system resources, a broker can pro-
mote itself to the processor of a subscription message and
disseminates this to the network. A publisher, RS encodes
the data and calculates the maximum flow to the process-
ing nodes. This flow contains redundant paths and the RS
decoder can reconstruct the data despite the failure of some
links. Upon receiving the data items, the processing node
matches them to the subscription requests, then calculates
the maximum flow to the subscriber. Then, each data item
is post-processed, RS encoded and sent to the subscriber.
Preliminary evaluation shows that flow-based routing can
cope with high-latencies without disturbing the data flow.

References

[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Trans. Comput. Syst., 19:332–383, August 2001.

[2] M. Curry, A. Skjellum, H. Ward, and R. Brightwell. Arbi-
trary dimension reed-solomon coding and decoding for ex-
tended raid on gpus. In PDSW, pages 1–3. IEEE Computer
Society, 2010.

[3] I. G. et. al. A high-performance hybrid computing approach
to massive contingency analysis in the power grid. In E-
SCIENCE ’09, pages 277–283. IEEE, 2009.

[4] A. V. Goldberg, E. Tardos, and R. E. Tarjan. Network Flow
Algorithms, volume 9 of Algorithms and Combinatorics, pages
101–164. Springer, 1990.

[5] G. Li, V. Muthusamy, and H.-A. Jacobsen. Adaptive content-
based routing in general overlay topologies. In Middleware
2008, volume 5346 of LNCS, pages 1–21. Springer, 2008.

[6] S. Pallickara and G. Fox. Naradabrokering: A distributed
middleware framework and architecture for enabling durable
peer-to-peer grids. In Middleware ’03, volume 2672 of LNCS,
pages 998–999. Springer, 2003.

136

