
Scalable Real Time Data Management for Smart Grid

Jian Yin
Pacific Northwest National Lab

Richland, WA, USA
1 (509) 371 6398

Jian.Yin@pnnl.gov

Ian Gorton
Pacific Northwest National Lab

Richland, WA, USA
1 (509) 375 3850

Ian.Gorton@pnnl.gov

Anand Kulkarni
Google Inc

6425, Penn Ave, Suite 700
Pittsburgh, PA, USA

anandkulkarni@google.com

Sumit Purohit
Pacific Northwest National Lab

Richland, WA, USA
1 (509) 372 6714

Sumit.Purohit@pnnl.gov

Bora Akyol
Pacific Northwest National Lab

Richland, WA, USA
1 (509) 371 6682

Bora@pnnl.gov

ABSTRACT

This paper presents GridMW, a scalable and reliable data
middleware layer for smart grids. Smart grids promise to improve
the efficiency of power grid systems and reduce green house
emissions through incorporating power generation from
renewable sources and shaping demands to match the supply. As a
result, power grid will become much more dynamic and require
constant adjustments, which requires analysis and decision
making applications to improve the efficiency and reliability of
smart grid systems. However, these applications rely on large
amounts of data gathered from power generation, transmission,
and consumption. To this end, millions of sensors, including
phasor measurement units (PMU) and smart meters, are being
deployed across the smart grid system. Existing data middleware
does not have the capability to collect, store, retrieve, and deliver
the enormous amount of data from these sensors to analysis and
control applications. Most existing data middleware approaches
utilize general software systems for flexibility so that the solutions
can provide general functionality for a range of applications.
However, overheads incurred by generalized APIs cause high
latencies and unpredictability in performance, which in turn
prevents achieving near real time latencies and high throughput.
In our work, by tailoring the system specifically to smart grids, we
are able to eliminate much of these overheads while still keeping
the implementation effort reasonable. This is achieved by using a
log structure inspired architecture to directly access the block
device layer, eliminating the indirection incurred by high level file
system interfaces. Preliminary results show our system can
significantly improve performance compared to traditional
systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Middleware 2011 Industry Track, December 12th, 2011, Lisbon, Portugal.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems

General Terms
Design, performance, experimentation, reliability, measurement

Keywords
Smart grids, performance, data management middleware, near real
time, efficiency

1. INTRODUCTION

Smart grids promise to improve the efficiency of power grid
systems and reduce green house emissions through incorporating
power generation from renewable sources and shaping demand to
match supply. Power generation from renewable resources such as
solar and wind is affected by weather factors that can be highly
fluctuating. To ensure these energy sources can be utilized
efficiently, smart grid systems must shape demand through
incentives to match the supply. As a result, the whole system
becomes highly dynamic and requires constant adjustment. How
to adjust the system can have a great impact on the efficiency and
reliability of power grid systems, which offer many opportunities
for innovation. In previous work by us and other researchers [2, 3,
5, 7, 10, 11], we have identified and developed several
applications that can be used to optimize power grid operations.

However, these applications rely on the precise estimation of the
state of power grid systems. To enable a precise estimate of power
grid, an enormous amount of data from millions of sensors from
the power grid must be used. Moreover, the relevant data must be
delivered to applications within real time constraints. Even though
millions of sensors such as phasor measurement units (PMU) and
smart meters are being widely deployed in the grid, currently, no
software system can collect, store, retrieve, and deliver this
amount of data in real time.

OSIsoft PI [6], which is built on top of SQL server, is the most
prominent technology used in power utilities. While this provides
sufficient data retrieval capability for current power grids, it
cannot handle the orders of magnitude increase in the number of
sensors and data volume for the emerging smart grids.

Even though there are several scalable systems [1, 3, 9] built for
Internet services, these systems are built for different applications
whose design requirements and workload characteristics are much
different from smart grids systems. Most of those systems must
handle arbitrary insertions, deletions and data modifications; some
must handle a wide range of data retrievals; and some of these
systems are specially customized to run on tens of thousands of
commodity machines that can fail frequently. As a result, those
systems are often built on top of high-level system interfaces such
as file system interfaces or database interfaces. As a result, much
indirection is introduced into these systems, which can cause both
high overheads and unpredictability due to alternative execution
paths.

The special requirements for smart grids include near real time
response time, which requires the latency for data ingestion,
retrieval, and delivery operations to be as predictable as possible.
Moreover, cost can be a major factor that can affect potential
deployments. Thus, it is essential to reduce hardware costs by
utilizing resources as efficiently as possible.

We designed GridMW, a scalable near real time data middleware
to meet these design requirements. By tailoring the design of
GridMW to the specific characteristics of power grid data and
applications, we are able to reduce the overhead and
unpredictability associated with indirection in high level system
interfaces without introducing additional complexity in the
implement when by using system level interfaces. Power grid data
are characterized by frequent insertion, less frequent deletion, and
rare updates. Moreover, power grid data are often highly
structured and also are inserted into our system with temporal
locality. Additionally, there is only a limited set of data retrieval
operations required. We can therefore focus on specialized
techniques to speed up this limited set of operations.
We designed a specialized log structure-inspired storage schema
to store power grid sensor data. The data is written directly to the
file system block device layer using the block device interfaces.
This eliminates the high overheads and unpredictability associated
with higher level interfaces such as file system interfaces, in
which one access can lead to multiple disk accesses for reading
the inode block, reading a variable number of indirect block, and
reading the data block itself. We designed specialized data
structures to keep track of data and free space in the storage
devices. By leveraging the fact that data are often inserted in
temporal order, we are able to minimize the metadata to the point
in which it can be easily kept in main memory. Hence, in our
system, a data insertion is translated into only one disk access.
Our system allows customized indexes for data retrieval. We
aggregate local main memory, SSD and remote main memory and
SSD to enable most metadata lookups to happen in the types of
memory that support random accesses. Remote direct memory
access (RDMA) allows us to utilized remote RAM and SSD
efficiently. We are able to reduce data retrieval overhead to one
disk access in most of the cases, which allows us to meet latency
requirements in the order of milliseconds. Preliminary results
show our system can significantly improve performance
compared to traditional systems used in power grid industry.

2. System Design

We have designed a scalable data middleware specialized for
smart grids. We take advantage of the common data format that
PMU’s and other sensors generate in power system, and utilize
this knowledge to store data in an efficient manner. This factor
enables us to concentrate on storing one type of data, and
customizing our system to work in efficient space, time
complexity. The GridMW store is responsible for ingesting and
retrieving power grid data with real time guarantees. First, it must
ingest data at a rate that can keep up with the enormous number of
sensors. Smart grid systems can have millions of smart meters and
PMUs. These sensors can generate data at a high rate. For
instance, PMU’s can generate measurements at a rate ranging
from thirty measurements per second to several hundred per
seconds. Second, it must retrieve data with milliseconds response
time. Delivering data to applications is only one step among
many steps in adjusting power grids to achieve efficiency and
reliability. Other steps can include carrying out real time high
performance state estimations and optimizing control decisions,
which can take several seconds to execute. In many scenarios,
such as synchronizing the phase of power, the control cycle must
be in the order of tens of milliseconds because power frequency is
60Hz. Therefore, the latency of data delivery should be as small
as possible. Furthermore, the latency should also be predictably
small. The GridMW store achieves high ingestion rates through
access to storage devices as directly as possible; parallelizing the
load among several machines and achieving real time data
retrieval by minimizing disk block access and exploiting
specialized and compressed indexes.
GridMW can ingest data streamed from sensors or data segments
from some intermediate processing of sensor data. The general
format of PMU data consists of values, measured by a sensor,
over a period of time. The sensor values are periodically measured
by PMU - voltage, frequency, current, and so on - and the
corresponding timestamp is recorded. Each record consists of a
timestamp, and series of values. This data is collected by a PDC
collection unit, which sends the block of collected data to
GridMW. This block of data can be seen as a series of values,
which can be represented using a two-dimensional array. The data
is broken into chunks to be written to block devices. Chunk size is
one of the important design parameters. While using small chunk
sizes can reduce wasted space due to internal fragmentation, it can
increase the overhead to keep track of these chunks. We address
this problem by keeping data in temporal order on the storage
device. This is possible because of the special characteristics of
power grid data. The data usually arrives in temporal order and
this is also the order in which we can store it for efficient
processing. Hence for each two dimensional array of values that is
to be stored on the disk, we eliminate the need to store the first
column (i.e. timestamp), and just store the starting value, and
difference for the timestamps. Using this information we can
randomly access records for a given timestamp. This reduces the
data block stored by our middleware to a series of values. Storing
temporal data chunks close together allows us to store the
beginning and end of sensor data and the corresponding chunk
indexes instead of every chunk, which can significantly reduce the
metadata to keep track of data stored in our storage system.
There are several options for us to build the GridMW store upon.
One choice is to use high-level system interfaces such file APIs.
File APIs provide high-level functions such as inserting, deleting,
and updating data contained in a file and storage management is

taken care of and hidden from us. However, file system APIs
introduce overheads associated with these high-level operations
and unpredictability. In particular, to access a particular piece of
data in a file, we have to read the disk block associated with the
inode as well as parsing through a variable number of indirect
blocks when the file is large. We therefore selected the block
device layer to eliminate this overhead and unpredictability.
While using block devices directly can be difficult, the special
characteristics of our workload (i.e., structured data, more
insertions and deletions, few or no updates) alleviate the burden of
implementing GridMW atop block devices. Additionally, based
on the special characteristics of power grid workloads, we build
indexes to further reduce the disk accesses to a constantly low
number. As we are accessing disk blocks directly, we are
responsible for managing space, namely keeping track of free and
used blocks, and fragmentation. Specifically, we use two data
structures to keep track of this data, the free list of the storage
space and the data list. The free list is a doubly linked list that
keeps track of the free chunks in the storage device that can be
used to store data. Since data is often inserted and deleted in order
and rarely updated, the space in the free list is often contiguous.
Instead of tracking every chunk, we track the beginning and end
of the free space to reduce the size of free list. We adopt a similar
approach for data list.
We have implemented a search structure on top of the storage
mechanism. Customized indexes are used to speed up data
retrievals. Because random disk accesses can be orders of
magnitude slower than main memory accesses, our design tries to
minimize disk accesses for each data retrieval operation. In most
cases, we reduce the number of disk accesses to one, which
speeds up data retrieval operations and makes the data retrieval
time predictable. That is essential for providing real time QoS
guarantees. We leverage the special characteristics of power grid
data as well as the characteristics of data retrieval workloads to
build efficient indexes with small footprints. To achieve real time
performance, it is essential that most index look-ups do not
happen from disk. We can use the main memory of local machine,
main memory from the remote machine, solid-state storage
devices from local machine, and SSD from remote machines to
store indexes.
Given the large number of sensors in smart grids, a single
machine cannot have enough capability to ingest and serve all the
data. GridMW can therefore aggregate resources from multiple
machines. Efficient load distribution schemes are implemented to
ensure near linear scale up. The system scales by using multiple
machines to increase the storage capacity or provide higher
aggregate processing power to handle high data retrieval
workloads. We use a master-slave architecture to build our
distributed data storage system. The master is responsible for
deciding which machine hosts which data. The data distribution
information is also replicated to clients so clients do not need to
contact master every time to decide where to store or retrieve data.
Consistency between clients and the master is maintained with
soft state updates. Data location can be changed due to failure and
recovery of slave nodes storing the data or load balancing after
workload changes. Periodic updates are sent to clients from the
master caused by the changing of data locations. Each slave
machine also maintains the metadata on which data is stored
locally. Hence, if a slave node does not find the data requested by
a client, it can inform the client that the data is not available
locally. The client node can then query the master to determine
the new location of the data and retrieve the data from the new
location. Other location updates are also piggybacked to this

query so client nodes can have up-to-data data location
information before the next periodic updates from the master. The
master can be replicated with distributed consensus to enhance
fault tolerance of our system.
Finally, to ensure that real time QoS guarantees are met, GridMW
includes an admission control component. Users specify the
amount of data to be ingested and the types and amount of data
retrieval service that they need. Admission control will determine
whether enough resources exist to satisfy the demand. If there are
not enough resources, admission control will first try to recruit
additional machines. If additional machines cannot be allocated,
the additional user request for service is rejected to ensure that
QoS guarantees can be provided for previous accepted services.

3. Preliminary Results

We have implemented most of the major features of our system,
and we are working on tuning and optimizing performance. In this
process, we have conducted some experiments to evaluate some
key aspects of the implementation. Our initial evaluation is
limited to a single node setup. Our testbed is a commodity Dell
Precision T3600 workstation with a 2.53 Ghz Dual Core Intel
Xeon processor, 16 GB DDR memory, and two 1TB 7200 RPM
hard disks. The operating system is Ubuntu Linux. We use PMU
data for our experiments. Our workloads are typical data ingestion
and data retrieval operations required by future power grid
applications such as state predication applications.

Figure 1. Performance evaluation of GridMW and MySQL in
ingesting a large number of PMU data records.

Our first set of experiments measure data ingestion performance.
In these experiments, a set of data is inserted to both MySQL and
GridMW. The numbers of records in each experiment range form
25000 to 250000. These data are in temporal sequences as they
are generated by PMU sensors. We start a timer after the SQL
database connection is made, and just before we start inserting
records and we stop the timer once the records are inserted into
the table. We clear the database before each experiment.
Similarly, we measure the data ingestion performance of
GridMW. The experimental results are illustrated in Figure 1.

Note that in GridMW, write buffering leads to low latency. We
did not wait until the data is synced to disks. This is acceptable for
two reasons. First, we can replicate the data into a few machines
to provide fault tolerance. Second, although syncing data to disks
can allow recovery from disks in case that the machine is crashed,
we need near real time latency and can not wait the most recently
written data to be recovered from disks. Periodically, pdflush
wakes up and writes the data to disks. As we can see from this
graph, our system outperforms MySQL by several orders of
magnitudes. The efficiency is mainly derived from the special
structure that we used in GridMW instead of relation table entries
in MySQL. Even though it is possible to aggregate several records
into a big object in MySQL, it is not often used and additional
code is needed to map the large object to individual records. Note
also that our MySQL is not highly tuned. Nevertheless, we expect
that GridMW can significantly outperform even a highly tuned
MySQL system.

Figure 2. Performance evaluation of GridMW and MySQL in
retrieving a large number of records.

We have also measured data retrieval performance of GridMW
and MySQL. Since GridMW is specially designed for power grids
applications. We measure data retrieval operations that are used
by power grid applications. In these experiments, we use a power
grid state predication application. Data are retrieved in temporal
sequences. To achieve accurate measurements, we ensure that
caches are flushed. Our special storage structures and indexes
reduce the time to look up the location of the data and the number
of blocks that contain the data. As a result, GridMW significantly
outperforms MySQL. Note that only the workloads for one
application are measured here. However, most power grid analysis
and control application exhibits similar patterns for data retrieval
operations.

4. Related Work

Our system is related to much previous work in data management
middleware. Traditionally, relational databases are used for data
management. However, recently many web search, social
network, and scientific applications generate and utilize an
explosive amount of data that the traditional databases cannot

handle. As a result, many systems have been built to addresses
these challenges. These systems include both specialized systems
that designed to address big data challenges for specific
applications and the systems that intend to be general and used by
different applications. The specialized systems include Facebook's
photo storage [16], which is specially optimized for Facebook’s
photo data and those optimizations are not directly applicable for
other applications. The general systems include cloud-based
database systems, key value stores, and scientific databases.
Chen et al. [20] propose to build DBMS like systems in cloud
computing environments, which enable the system to scale up.
However, their data model is quite different from power grid data
and cannot be used efficiently for power grid data.
SciDB[21] is proposed as a DBMS based solution that would
meet the need of scientific uses and increasingly data rich science.
It uses multidimensional, nested array model with array cells
containing records, which in turn can contain components that are
multi-dimensional arrays. However, it is not designed to provide
predictable and near real time performance.
Another class of systems is key-value store systems. These
systems include commercial systems such as Amazon’s S3 and
Google Storage and many research systems [1,4, 9, 17,18]. One of
the challenges inherent in large-scale fault tolerant key-value store
systems is consistency. These system provide a range efficiency
and consistency tradeoff ranging from using chain replication [14]
to just providing eventual consistency [15]. Our system avoids
this tradeoff by leveraging data and application semantics. For
instance, the measurements are immutable and cannot change.
The intermediate analysis results are generated in specific time
intervals and can have implicit expiration times associated with
them. Additionally, there are specific patterns for data ingestions
and data retrievals for power grid data. GridMW leverages these
patterns to structure the data and builds specialized index to speed
up data storage and retrieve operations. A general key-value store
system cannot leverage these special patterns.
There are also several studies [17, 18] in the use flash memory to
build fast key value store systems. The simple design of GridMW
makes it easy to exploit flash memory.
There is also much work in providing QoS guarantees for data
storage and retrieval. For instance, Chi et al. [19] propose a data
structure call SLA-tree for cloud based services. However, these
systems mainly focus on differential service instead of near real
time latency.
Recently, the data management challenge in future power grids
has received much attention in research community. There is
much related work that addresses other aspects of the data
challenge of future power grids. For instance, Tomsovic et al. [13]
have built a data middleware layer, GridStat for delivering power
grid data to power grid analysis or control applications in real
time. GridStat enables interoperability across different operating
systems, network technologies, programming languages, and
computer architectures. It adopts a publish-subscribe architecture
with status variables for specifying quality of service (QoS)
requirements, including timeliness, redundant paths, and computer
security. It also provides its interfaces using CORBA, a widely
utilized middleware standard. However, unlike GridMW, GridStat
does not provide real time data ingestion and retrieval capability
and thus it can only be used for current data instead of historical
data.

5. Conclusion

To fulfill the promise of smart grids, a reliable real time data
management layer is needed to store, retrieve and deliver data to
power grid analysis and control applications in real time. The data
management layer needs to be scalable to handle millions of
sensors including PMUs and smart meters while still providing
high availability and real time QoS guarantees.
We observed that existing systems use high level interfaces and
indirection from these interfaces introduces high overhead and
unpredictable latencies. We therefore select the lowest layer of
storage interface available to build our system on while still
maintaining portability. By tailoring our design specifically to
power grid applications, we are able to prototype our system with
a reasonable amount of implement effort. Our system includes a
log inspired storage structure and specialized indexes to speed up
data retrievals and it can limit the number of disk operations
needed by most data retrieval tasks to one. We evaluated our
system with controlled experiments and preliminary experimental
results show that our system reduces latency and increases
throughput significant and provides consistent performance.

6. ACKNOWLEDGMENTS

This work is funded by Laboratory-Directed Research and
Development within the Power Grid Initiative. Research is
performed at Pacific Northwest National Laboratory located in
Richland Washington. PNNL is operated by Battelle Memorial
Institute under contract DE-AC05-76RLO1830 with the U.S.
Department of Energy.

7. REFERENCES

[1] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. 2007. Dynamo: amazon's highly available key-value
store. In Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles (SOSP '07),
October 14-17, Stevenson, Washington, 2007.

[2] J. Nieplocha, D. Chavarra-Miranda, V. Tipparaju, Z. Huang,
and A. Marquez. 2008. "A parallel WLS state estimator on
shared memory computers." In Proceedings of The 8th
International Power Engineering Conference, IPEC 2007,
Piscataway, NJ, pp. 395-400.

[3] Z. Huang, and J. Nieplocha. "Transforming Power Grid
Operations via High Performance Computing." In 2008 IEEE
Power Engineering Society General Meeting - Conversion
and Delivery of Electrical Energy in the 21st Century. IEEE
Piscataway, NJ.

[4] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A.
Silberstein, P. Bohannon, H. -A. Jacobsen, N. Puz, D.
Weaver, and R. Yerneni. PNUTS: Yahoo!'s hosted data
serving platform. In Proceedings of the 34th International
Conference on Very Large Data Bases (VLDB'08), pages
1277-1288, August 2008.

[5] I. Gorton, Z. Huang, Y. Chen, B. Kalahar, S. Jin, D.
Chavarría-Miranda, D. Baxter, and J. Feo, “A High-

Performance Hybrid Computing Approach to Massive
Contingency Analysis in the Power Grid”, the 5th IEEE
International Conference on e-Science, Oxford, UK, Dec 7-
9th, 2009, pp. 277–283.

[6] OSISoft PI System. http://www.osisoft.com/.
[7] Z. Huang, Y. Chen, and J. Nieplocha, “Massive Contingency

Analysis with High Performance Computing”, Proceeding of
IEEE PES General Meeting, Calgary, Canada, July 26-30,
2009, pp. 1-8.

[8] P. Cudre-Mauroux, H. Kimura, K. -T. Lim, J. Rogers, R.
Simakov, E. Soroush, P. Velikhov, D. L. Wang, M.
Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S.
Madden, J. Patel, M. Stonebraker, and S. Zdonik. 2009. A
demonstration of SciDB: a science-oriented DBMS. Proc.
VLDB Endow. 2, 2 (August 2009), 1534-1537

[9] Jun Rao, Eugene J. Shekita, and Sandeep Tata. 2011. Using
Paxos to build a scalable, consistent, and highly available
datastore. Proc. VLDB Endow. 4, 4 (January 2011), 243-254.

[10] Y. Chen, Z. Huang, P. Wong, P. Mackey, C. Allwardt, J. Ma,
and F. Greitzer. 2010. "An Advanced Decision Support Tool
for Electricity Infrastructure Operations." In Critical
Infrastructure Protection IV, IFIP Advances in Information
and Communication Technology, vol. 342, no. 2010, ed. T.
Moore and S. Shenoi, pp. 245-260.

[11] Z. Huang, N. Zhou, F. Tuffner, Y. Chen, D. Trudnowski, W.
Mittelstadt, J. Hauer, and J. Dagle. 2010. "Improving Small
Signal Stability through Operating Point Adjustment." In
Proceedings of the 2010 IEEE Power and Energy Society
General Meeting.

[12] K. Tomsovic , D. Bakken , M. Venkatasubramanian, and A.
Bose, "Designing the next generation of real-time control,
communication and computations for large power systems",
IEEE Proceedings In IEEE Proceedings, Vol. 93, No. 5.
(May 2005), pp. 965-979.

[13] K. Tomsovic , D. Bakken , M. Venkatasubramanian, and A.
Bose, "Designing the next generation of real-time control,
communication and computations for large power systems",
IEEE Proceedings In IEEE Proceedings, Vol. 93, No. 5.
(May 2005), pp. 965-979.

[14] Robbert van Renesse and Fred B. Schneider. 2004. Chain
replication for supporting high throughput and availability. In
Proceedings of the 6th conference on Symposium on
Opearting Systems Design and Implementation - Volume 6
(OSDI'04), Vol. 6. USENIX Association, Berkeley, CA,
USA, 7-7.

[15] Werner Vogels, Eventually consistent, Communications of
the ACM, v.52 n.1, January 2009.

[16] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and
Peter Vajgel. 2010. Finding a needle in Haystack: facebook's
photo storage. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation (OSDI'10),
1-8, Vancouver, BC, Canada, 2010.

[17] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010.
FlashStore: high throughput persistent key-value store. Proc.
VLDB Endow. 3, 1-2 (September 2010), 1414-1425.

[18] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011.
SkimpyStash: RAM space skimpy key-value store on flash-
based storage. In Proceedings of the 2011 international

conference on Management of data (SIGMOD '11). ACM,
New York, NY, USA, 25-36.

[19] Yun Chi, Hyun Jin Moon, Hakan Hacig, and Junichi
Tatemura. 2011. SLA-tree: a framework for efficiently
supporting SLA-based decisions in cloud computing. In
Proceedings of the 14th International Conference on
Extending Database Technology (EDBT/ICDT '11),
Anastasia Ailamaki, Sihem Amer-Yahia, Jignesh Pate, Tore
Risch, Pierre Senellart, and Julia Stoyanovich (Eds.). ACM,
New York, NY, USA, 129-140.

[20] G. Chen, H. T. Vo, Sai Wu, B. C. Ooi, and M. T. Özsu ."A
Framework for Supporting DBMS-like Indexes in the
Cloud," in proceeding of 37th international conference on
very large data bases, Seattle, Washington, August 29-
Septermber 3, 2011.

[21] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R.
Simakov, E. Soroush, P. Velikhov, D. L. Wang, M.
Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier,
S.Madden, J. Patel, M. Stonebraker, and S. Zdonik. 2009. A
demonstration of SciDB: a science-oriented DBMS. Proc.
VLDB Endow. 2, 2 (August 2009), 1534-153.

