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ABSTRACT 
 
This paper presents GridMW, a scalable and reliable data 
middleware layer for smart grids. Smart grids promise to improve 
the efficiency of power grid systems and reduce green house 
emissions through incorporating power generation from 
renewable sources and shaping demands to match the supply. As a 
result, power grid will become much more dynamic and require 
constant adjustments, which requires analysis and decision 
making applications to improve the efficiency and reliability of 
smart grid systems. However, these applications rely on large 
amounts of data gathered from power generation, transmission, 
and consumption. To this end, millions of sensors, including 
phasor measurement units (PMU) and smart meters, are being 
deployed across the smart grid system. Existing data middleware 
does not have the capability to collect, store, retrieve, and deliver 
the enormous amount of data from these sensors to analysis and 
control applications. Most existing data middleware approaches 
utilize general software systems for flexibility so that the solutions 
can provide general functionality for a range of applications. 
However, overheads incurred by generalized APIs cause high 
latencies and unpredictability in performance, which in turn 
prevents achieving near real time latencies and high throughput. 
In our work, by tailoring the system specifically to smart grids, we 
are able to eliminate much of these overheads while still keeping 
the implementation effort reasonable. This is achieved by using a 
log structure inspired architecture to directly access the block 
device layer, eliminating the indirection incurred by high level file 
system interfaces. Preliminary results show our system can 
significantly improve performance compared to traditional 
systems.  
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1. INTRODUCTION 
 
Smart grids promise to improve the efficiency of power grid 
systems and reduce green house emissions through incorporating 
power generation from renewable sources and shaping demand to 
match supply. Power generation from renewable resources such as 
solar and wind is affected by weather factors that can be highly 
fluctuating. To ensure these energy sources can be utilized 
efficiently, smart grid systems must shape demand through 
incentives to match the supply. As a result, the whole system 
becomes highly dynamic and requires constant adjustment. How 
to adjust the system can have a great impact on the efficiency and 
reliability of power grid systems, which offer many opportunities 
for innovation. In previous work by us and other researchers [2, 3, 
5, 7, 10, 11], we have identified and developed several 
applications that can be used to optimize power grid operations. 

However, these applications rely on the precise estimation of the 
state of power grid systems. To enable a precise estimate of power 
grid, an enormous amount of data from millions of sensors from 
the power grid must be used. Moreover, the relevant data must be 
delivered to applications within real time constraints. Even though 
millions of sensors such as phasor measurement units (PMU) and 
smart meters are being widely deployed in the grid, currently, no 
software system can collect, store, retrieve, and deliver this 
amount of data in real time. 



OSIsoft PI [6], which is built on top of SQL server, is the most 
prominent technology used in power utilities. While this provides 
sufficient data retrieval capability for current power grids, it 
cannot handle the orders of magnitude increase in the number of 
sensors and data volume for the emerging smart grids. 

Even though there are several scalable systems [1, 3, 9] built for 
Internet services, these systems are built for different applications 
whose design requirements and workload characteristics are much 
different from smart grids systems. Most of those systems must 
handle arbitrary insertions, deletions and data modifications; some 
must handle a wide range of data retrievals; and some of these 
systems are specially customized to run on tens of thousands of 
commodity machines that can fail frequently. As a result, those 
systems are often built on top of high-level system interfaces such 
as file system interfaces or database interfaces. As a result, much 
indirection is introduced into these systems, which can cause both 
high overheads and unpredictability due to alternative execution 
paths. 

The special requirements for smart grids include near real time 
response time, which requires the latency for data ingestion, 
retrieval, and delivery operations to be as predictable as possible. 
Moreover, cost can be a major factor that can affect potential 
deployments. Thus, it is essential to reduce hardware costs by 
utilizing resources as efficiently as possible.  

We designed GridMW, a scalable near real time data middleware 
to meet these design requirements. By tailoring the design of 
GridMW to the specific characteristics of power grid data and 
applications, we are able to reduce the overhead and 
unpredictability associated with indirection in high level system 
interfaces without introducing additional complexity in the 
implement when by using system level interfaces. Power grid data 
are characterized by frequent insertion, less frequent deletion, and 
rare updates. Moreover, power grid data are often highly 
structured and also are inserted into our system with temporal 
locality. Additionally, there is only a limited set of data retrieval 
operations required. We can therefore focus on specialized 
techniques to speed up this limited set of operations. 
We designed a specialized log structure-inspired storage schema 
to store power grid sensor data. The data is written directly to the 
file system block device layer using the block device interfaces. 
This eliminates the high overheads and unpredictability associated 
with higher level interfaces such as file system interfaces, in 
which one access can lead to multiple disk accesses for reading 
the inode block, reading a variable number of indirect block, and 
reading the data block itself.  We designed specialized data 
structures to keep track of data and free space in the storage 
devices. By leveraging the fact that data are often inserted in 
temporal order, we are able to minimize the metadata to the point 
in which it can be easily kept in main memory. Hence, in our 
system, a data insertion is translated into only one disk access. 
Our system allows customized indexes for data retrieval. We 
aggregate local main memory, SSD and remote main memory and 
SSD to enable most metadata lookups to happen in the types of 
memory that support random accesses. Remote direct memory 
access (RDMA) allows us to utilized remote RAM and SSD 
efficiently. We are able to reduce data retrieval overhead to one 
disk access in most of the cases, which allows us to meet latency 
requirements in the order of milliseconds. Preliminary results 
show our system can significantly improve performance 
compared to traditional systems used in power grid industry. 

  

2. System Design 
 
We have designed a scalable data middleware specialized for 
smart grids. We take advantage of the common data format that 
PMU’s and other sensors generate in power system, and utilize 
this knowledge to store data in an efficient manner. This factor 
enables us to concentrate on storing one type of data, and 
customizing our system to work in efficient space, time 
complexity. The GridMW store is responsible for ingesting and 
retrieving power grid data with real time guarantees. First, it must 
ingest data at a rate that can keep up with the enormous number of 
sensors. Smart grid systems can have millions of smart meters and 
PMUs. These sensors can generate data at a high rate. For 
instance, PMU’s can generate measurements at a rate ranging 
from thirty measurements per second to several hundred per 
seconds. Second, it must retrieve data with milliseconds response 
time.  Delivering data to applications is only one step among 
many steps in adjusting power grids to achieve efficiency and 
reliability. Other steps can include carrying out real time high 
performance state estimations and optimizing control decisions, 
which can take several seconds to execute. In many scenarios, 
such as synchronizing the phase of power, the control cycle must 
be in the order of tens of milliseconds because power frequency is 
60Hz. Therefore, the latency of data delivery should be as small 
as possible. Furthermore, the latency should also be predictably 
small. The GridMW store achieves high ingestion rates through 
access to storage devices as directly as possible; parallelizing the 
load among several machines and achieving real time data 
retrieval by minimizing disk block access and exploiting 
specialized and compressed indexes. 
GridMW can ingest data streamed from sensors or data segments 
from some intermediate processing of sensor data. The general 
format of PMU data consists of values, measured by a sensor, 
over a period of time. The sensor values are periodically measured 
by PMU - voltage, frequency, current, and so on - and the 
corresponding timestamp is recorded. Each record consists of a 
timestamp, and series of values. This data is collected by a PDC 
collection unit, which sends the block of collected data to 
GridMW. This block of data can be seen as a series of values, 
which can be represented using a two-dimensional array. The data 
is broken into chunks to be written to block devices. Chunk size is 
one of the important design parameters. While using small chunk 
sizes can reduce wasted space due to internal fragmentation, it can 
increase the overhead to keep track of these chunks. We address 
this problem by keeping data in temporal order on the storage 
device. This is possible because of the special characteristics of 
power grid data. The data usually arrives in temporal order and 
this is also the order in which we can store it for efficient 
processing. Hence for each two dimensional array of values that is 
to be stored on the disk, we eliminate the need to store the first 
column (i.e. timestamp), and just store the starting value, and 
difference for the timestamps. Using this information we can 
randomly access records for a given timestamp. This reduces the 
data block stored by our middleware to a series of values. Storing 
temporal data chunks close together allows us to store the 
beginning and end of sensor data and the corresponding chunk 
indexes instead of every chunk, which can significantly reduce the 
metadata to keep track of data stored in our storage system. 
There are several options for us to build the GridMW store upon. 
One choice is to use high-level system interfaces such file APIs. 
File APIs provide high-level functions such as inserting, deleting, 
and updating data contained in a file and storage management is 



taken care of and hidden from us. However, file system APIs 
introduce overheads associated with these high-level operations 
and unpredictability. In particular, to access a particular piece of 
data in a file, we have to read the disk block associated with the 
inode as well as parsing through a variable number of indirect 
blocks when the file is large. We therefore selected the block 
device layer to eliminate this overhead and unpredictability. 
While using block devices directly can be difficult, the special 
characteristics of our workload (i.e., structured data, more 
insertions and deletions, few or no updates) alleviate the burden of 
implementing GridMW atop block devices. Additionally, based 
on the special characteristics of power grid workloads, we build 
indexes to further reduce the disk accesses to a constantly low 
number. As we are accessing disk blocks directly, we are 
responsible for managing space, namely keeping track of free and 
used blocks, and fragmentation. Specifically, we use two data 
structures to keep track of this data, the free list of the storage 
space and the data list. The free list is a doubly linked list that 
keeps track of the free chunks in the storage device that can be 
used to store data. Since data is often inserted and deleted in order 
and rarely updated, the space in the free list is often contiguous. 
Instead of tracking every chunk, we track the beginning and end 
of the free space to reduce the size of free list. We adopt a similar 
approach for data list.  
We have implemented a search structure on top of the storage 
mechanism. Customized indexes are used to speed up data 
retrievals. Because random disk accesses can be orders of 
magnitude slower than main memory accesses, our design tries to 
minimize disk accesses for each data retrieval operation. In most 
cases, we reduce the number of disk accesses to one, which 
speeds up data retrieval operations and makes the data retrieval 
time predictable. That is essential for providing real time QoS 
guarantees. We leverage the special characteristics of power grid 
data as well as the characteristics of data retrieval workloads to 
build efficient indexes with small footprints. To achieve real time 
performance, it is essential that most index look-ups do not 
happen from disk. We can use the main memory of local machine, 
main memory from the remote machine, solid-state storage 
devices from local machine, and SSD from remote machines to 
store indexes.  
Given the large number of sensors in smart grids, a single 
machine cannot have enough capability to ingest and serve all the 
data. GridMW can therefore aggregate resources from multiple 
machines. Efficient load distribution schemes are implemented to 
ensure near linear scale up. The system scales by using multiple 
machines to increase the storage capacity or provide higher 
aggregate processing power to handle high data retrieval 
workloads. We use a master-slave architecture to build our 
distributed data storage system. The master is responsible for 
deciding which machine hosts which data. The data distribution 
information is also replicated to clients so clients do not need to 
contact master every time to decide where to store or retrieve data. 
Consistency between clients and the master is maintained with 
soft state updates. Data location can be changed due to failure and 
recovery of slave nodes storing the data or load balancing after 
workload changes. Periodic updates are sent to clients from the 
master caused by the changing of data locations. Each slave 
machine also maintains the metadata on which data is stored 
locally. Hence, if a slave node does not find the data requested by 
a client, it can inform the client that the data is not available 
locally. The client node can then query the master to determine 
the new location of the data and retrieve the data from the new 
location. Other location updates are also piggybacked to this 

query so client nodes can have up-to-data data location 
information before the next periodic updates from the master. The 
master can be replicated with distributed consensus to enhance 
fault tolerance of our system.  
Finally, to ensure that real time QoS guarantees are met, GridMW 
includes an admission control component. Users specify the 
amount of data to be ingested and the types and amount of data 
retrieval service that they need. Admission control will determine 
whether enough resources exist to satisfy the demand. If there are 
not enough resources, admission control will first try to recruit 
additional machines. If additional machines cannot be allocated, 
the additional user request for service is rejected to ensure that 
QoS guarantees can be provided for previous accepted services.  
 

3. Preliminary Results 
 
We have implemented most of the major features of our system, 
and we are working on tuning and optimizing performance. In this 
process, we have conducted some experiments to evaluate some 
key aspects of the implementation. Our initial evaluation is 
limited to a single node setup. Our testbed is a commodity Dell 
Precision T3600 workstation with a 2.53 Ghz Dual Core Intel 
Xeon processor, 16 GB DDR memory, and two 1TB 7200 RPM 
hard disks. The operating system is Ubuntu Linux. We use PMU 
data for our experiments. Our workloads are typical data ingestion 
and data retrieval operations required by future power grid 
applications such as state predication applications.  
 

 
Figure 1. Performance evaluation of GridMW and MySQL in 
ingesting a large number of PMU data records. 
 
Our first set of experiments measure data ingestion performance. 
In these experiments, a set of data is inserted to both MySQL and 
GridMW. The numbers of records in each experiment range form 
25000 to 250000. These data are in temporal sequences as they 
are generated by PMU sensors. We start a timer after the SQL 
database connection is made, and just before we start inserting 
records and we stop the timer once the records are inserted into 
the table. We clear the database before each experiment. 
Similarly, we measure the data ingestion performance of 
GridMW. The experimental results are illustrated in Figure 1. 



Note that in GridMW, write buffering leads to low latency. We 
did not wait until the data is synced to disks. This is acceptable for 
two reasons. First, we can replicate the data into a few machines 
to provide fault tolerance. Second, although syncing data to disks 
can allow recovery from disks in case that the machine is crashed, 
we need near real time latency and can not wait the most recently 
written data to be recovered from disks. Periodically, pdflush 
wakes up and writes the data to disks. As we can see from this 
graph, our system outperforms MySQL by several orders of 
magnitudes. The efficiency is mainly derived from the special 
structure that we used in GridMW instead of relation table entries 
in MySQL. Even though it is possible to aggregate several records 
into a big object in MySQL, it is not often used and additional 
code is needed to map the large object to individual records. Note 
also that our MySQL is not highly tuned. Nevertheless, we expect 
that GridMW can significantly outperform even a highly tuned 
MySQL system. 
 

 
Figure 2. Performance evaluation of GridMW and MySQL in 
retrieving a large number of records.  
 
We have also measured data retrieval performance of GridMW 
and MySQL. Since GridMW is specially designed for power grids 
applications. We measure data retrieval operations that are used 
by power grid applications. In these experiments, we use a power 
grid state predication application. Data are retrieved in temporal 
sequences. To achieve accurate measurements, we ensure that 
caches are flushed. Our special storage structures and indexes 
reduce the time to look up the location of the data and the number 
of blocks that contain the data. As a result, GridMW significantly 
outperforms MySQL. Note that only the workloads for one 
application are measured here. However, most power grid analysis 
and control application exhibits similar patterns for data retrieval 
operations.  
  

4. Related Work 
 
Our system is related to much previous work in data management 
middleware. Traditionally, relational databases are used for data 
management. However, recently many web search, social 
network, and scientific applications generate and utilize an 
explosive amount of data that the traditional databases cannot 

handle. As a result, many systems have been built to addresses 
these challenges. These systems include both specialized systems 
that designed to address big data challenges for specific 
applications and the systems that intend to be general and used by 
different applications. The specialized systems include Facebook's 
photo storage [16], which is specially optimized for Facebook’s 
photo data and those optimizations are not directly applicable for 
other applications. The general systems include cloud-based 
database systems, key value stores, and scientific databases.  
Chen et al. [20] propose to build DBMS like systems in cloud 
computing environments, which enable the system to scale up. 
However, their data model is quite different from power grid data 
and cannot be used efficiently for power grid data.  
SciDB[21] is proposed as a DBMS based solution that would 
meet the need of scientific uses and increasingly data rich science. 
It uses multidimensional, nested array model with array cells 
containing records, which in turn can contain components that are 
multi-dimensional arrays. However, it is not designed to provide 
predictable and near real time performance.  
Another class of systems is key-value store systems. These 
systems include commercial systems such as Amazon’s S3 and 
Google Storage and many research systems [1,4, 9, 17,18]. One of 
the challenges inherent in large-scale fault tolerant key-value store 
systems is consistency. These system provide a range efficiency 
and consistency tradeoff ranging from using chain replication [14] 
to just providing eventual consistency [15]. Our system avoids 
this tradeoff by leveraging data and application semantics. For 
instance, the measurements are immutable and cannot change. 
The intermediate analysis results are generated in specific time 
intervals and can have implicit expiration times associated with 
them. Additionally, there are specific patterns for data ingestions 
and data retrievals for power grid data. GridMW leverages these 
patterns to structure the data and builds specialized index to speed 
up data storage and retrieve operations. A general key-value store 
system cannot leverage these special patterns.  
There are also several studies [17, 18] in the use flash memory to 
build fast key value store systems. The simple design of GridMW 
makes it easy to exploit flash memory.  
There is also much work in providing QoS guarantees for data 
storage and retrieval. For instance, Chi et al. [19] propose a data 
structure call SLA-tree for cloud based services. However, these 
systems mainly focus on differential service instead of near real 
time latency.  
Recently, the data management challenge in future power grids 
has received much attention in research community. There is 
much related work that addresses other aspects of the data 
challenge of future power grids. For instance, Tomsovic et al. [13] 
have built a data middleware layer, GridStat for delivering power 
grid data to power grid analysis or control applications in real 
time. GridStat enables interoperability across different operating 
systems, network technologies, programming languages, and 
computer architectures. It adopts a publish-subscribe architecture 
with status variables for specifying quality of service (QoS) 
requirements, including timeliness, redundant paths, and computer 
security. It also provides its interfaces using CORBA, a widely 
utilized middleware standard. However, unlike GridMW, GridStat 
does not provide real time data ingestion and retrieval capability 
and thus it can only be used for current data instead of historical 
data. 
 



5. Conclusion  
 
To fulfill the promise of smart grids, a reliable real time data 
management layer is needed to store, retrieve and deliver data to 
power grid analysis and control applications in real time. The data 
management layer needs to be scalable to handle millions of 
sensors including PMUs and smart meters while still providing 
high availability and real time QoS guarantees.  
We observed that existing systems use high level interfaces and 
indirection from these interfaces introduces high overhead and 
unpredictable latencies. We therefore select the lowest layer of 
storage interface available to build our system on while still 
maintaining portability. By tailoring our design specifically to 
power grid applications, we are able to prototype our system with 
a reasonable amount of implement effort. Our system includes a 
log inspired storage structure and specialized indexes to speed up 
data retrievals and it can limit the number of disk operations 
needed by most data retrieval tasks to one. We evaluated our 
system with controlled experiments and preliminary experimental 
results show that our system reduces latency and increases 
throughput significant and provides consistent performance. 
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