
An Evaluation of the Network Simulators in Large-Scale
Distributed Simulations

Selim Ciraci
Pacific Northwest National Laboratory

Richland, WA, USA
selim.ciraci@pnnl.gov

Bora Akyol
Pacific Northwest National Laboratory

Richland, WA, USA
bora@pnnl.gov

ABSTRACT
Networks for the smart grids are characterized by millions of sen-
sor nodes exchanging information about the status of the grid. This
information exchange must be realized reliably and efficiently due
to the mission critical nature of the power grid. Hence, the applica-
tions and the network protocols developed for the smart grid need
go through rigorous testing and analysis before deployment. Devel-
opers usually do not have access to such a large-scale network that
can be used as a controlled test-bed; therefore, network simulation
becomes an essential tool for testing.

Network simulation is a well studied problem in the literature
and there are various widely used network simulators. These sim-
ulators can be adopted for testing applications and protocols of the
smart grid. Due to the scale of these networks, parallel/distributed
simulations need to be conducted. Even though most network sim-
ulators support distributed simulations, generating a large-scale net-
work model to simulate can still be a cumbersome task. In this
survey, we describe a selection of commonly used network simula-
tors and evaluate them with respect to the following features that
can aid users in distributed simulations of large-scale networks:
transparency of setting up distributed simulation, automated topol-
ogy generation, information hiding, lightweight routing protocols,
network error simulation, evaluation of the network model during
simulation and trace analysis tools. As a complementary result, we
identify two issues with network simulators that can be addressed
with runtime steering methods.
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1. INTRODUCTION
Networks in smart grids are characterized by millions of sensor

nodes that exchange information about power usage. The smart
grid applications rely on this exchange to match the power supply
to the demand [8] [6]. Because power grids are mission critical,
the protocols and the applications used in the smart grids have to
be reliable and efficient. As such, these protocols and applications
need to be rigorously tested and analyzed before the development
phase. However, developers and researchers, usually, do not have
access to a large-scale network that can be used as a controlled test-
bed. Therefore, network simulation becomes an essential tool for
testing.

Network simulation has been well studied in the literature. These
studies contributed to the development of widely adopted network
simulators. A network simulator is a library containing a rich set
of components representing the network hardware and software.
These components can be used in the simulation to generate close
to real-life execution scenarios. Due to this capability, network sim-
ulators have received a lot of attention for testing the stability, per-
formance and effectiveness of new protocols. Recently, network
simulators gained support for distributed simulations of large-scale
network models [12]. Here, the network model is divided among
different hosts to reduce the execution time and to combine the
available memory in all the hosts to store the model.

With distributed simulation support, network simulators can be
used for testing the applications and the protocols of the smart grid.
The scale of the network models, however, poses challenges such
as long source files for setting up network models, huge trace files
generated by the simulators, long execution times, and lack of light-
weight protocols. These challenges, when not addressed appro-
priately, might increase the effort needed to use the simulator and
negate the benefits of the simulation.

In order to address these challenges, new features for network
simulators are required. To this aim, we have identified the follow-
ing features that can ease the development and simulation of large-
scale networks with distributed network simulators: transparency
of setting up distributed simulations, automated topology gener-
ators, information hiding, support for lightweight routing proto-
cols, network error simulation, evaluation of the network model
during simulation, and trace analysis. In this survey, we report
how the network simulators support these features. Our survey
covers network simulators ns-2 [4] with distributed simulation ex-
tension [12], GTNetS [1], INET for OMNET++ [2], and ns-3 [5],
which are generic (i.e. not designed for specific networking sce-
narios), open source, and support a wide range of link layers, pro-
tocols and applications. Compared to existing surveys of network
simulators [15] [13] [9], our contribution is the identification of the
features that aid the simulation of large-scale networks and a com-
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Figure 1: An example network topology (a), the program to
simulate this topology (b), and the initial state of the simulator
(c)

parison of the network simulators with respect to these features.
As a complementary result, we also report two issues we identified
with the network simulators and propose a solution approach based
on runtime steering methods.

This paper is organized as follows: Section 2 provides a back-
ground on network simulation. An overview of the current net-
work simulators are presented in Section 3. The comparison of
network simulators with respect to the features aiding the develop-
ment/simulation of large-scale networks is presented in Section 4.
Section 5 discusses the open issues we identified with network sim-
ulators, and describes our solution approach. Finally, Section 6
presents our conclusions.

2. BACKGROUND ON NETWORK
SIMULATORS

Network simulators are discrete event simulators that allow close
to real-life simulation of communication networks. As the simula-
tion mimics real-life network appliances, the network simulators
follow a similar design. In this section, we briefly introduce this
design and describe how simulations are programmed.

The network simulators provide the models for the following net-
work appliances: the nodes representing the computers/routers, the
network “enabled” applications running on the nodes, the network
devices of the nodes, the protocol stack nodes used for commu-
nicating with each other and the packets. Each of these network
appliances is implemented in an abstract class and they provide the
methods for simulating the functionality of the network layer the
appliance corresponds. The abstract classes are specialized to im-
plement a specific network appliance. For example, the base class
representing the network devices has methods for sending and re-
ceiving a packet. The class representing an Ethernet device over-
rides these methods and implements how an Ethernet card sends a
packet.

Network simulators are class libraries that are imported by the
users to program the simulation. Programming a simulation in-
volves creating instances of the classes representing the network
appliances and building the encapsulations between them. Fig-
ure 1-(a) presents an example network that we wish to simulate;
the simulation program corresponding to this network is shown in
Figure 1-(b). Here, the program starts by creating two instances of
the class Node and two instances of the class P2PNetworkDevice.
The class P2PNetworkDevice represents the network interface for a
basic peer-to-peer connection between two computers like a laplink

connection. At lines 6 - 9, the properties like link speed and laten-
cies of the instances of this network device are set. Then, these are
added to the instances of the class Node, just like adding network
hardware to a computer.

The network simulation is executed by the simulator, which is
implemented in a class providing the methods to schedule events,
to start and to stop the simulation. The methods for scheduling
events are called from the classes representing network appliances
and the start/stop methods are called from the user programs. Here,
events represent an occurrence related to the network, like a packet
reaching its destination. An event consists of a time and a refer-
ence to the instance of the network appliance that will react to it.
The simulator is a discrete event loop; it dispatches the event with
the smallest time, the event receiver in turn might schedule new
events to be dispatched at a later time. This continues until the stop
method is called or until there are no more events left to dispatch.

In the example shown in Figure 1-(b), the call at line 24 starts
the discrete event loop. Figure 1-(c) presents the scheduled events
before this call. These events are scheduled from the methods set-
StartTime(). Once they are dispatched, they are received by the
method startApplication() of the instances of the UDPEchoClient
and UDPEchoServer classes. This method in both classes is imple-
mented such that it schedules an event with a later time representing
the network device receiving a packet sent by the application.

The execution time and the memory requirements of the simula-
tor greatly depends on the size of the network model. As such, a
simulation with a fairly large network model can take a long time
to complete [15]. To address this problem, distributed simulations
are proposed [12]. In a distributed simulation, the input model is
divided across multiple simulator processes. A simulator process p
executes the events from it’s portion of the network model m and
the events originated by other processes that are destined to a node
in m. A middleware synchronizes the simulated time between the
simulator processes: it ensures that when a simulator processes an
event at time t, that simulator has received and processes all events
(originating from other simulator processes) with timestamps less
than t.

3. AN OVERVIEW OF NETWORK
SIMULATORS

When programming simulations with large-topologies, it is im-
portant to reuse existing components as much as possible to reduce
simulation development time. Therefore, the types of networking
hardware/software that can be simulated become an important fac-
tor in the choice of a network simulator. The network simulators
INET, ns-2, GTNetS and ns-3 have a wide repository of compo-
nents that the users can import and use in their simulations. As
these simulators are open-source, they can easily be reached and,
hence, they are widely accepted/used simulators in the computer
networking literature. Our survey includes these four simulators
due to reasons mentioned above. This section provides an overview
on these network simulators.

ns-2: This is implemented in C++ and the simulator exposes a
front-end API to the users. This front-end API is in oTCL lan-
guage; therefore, the network model and the simulation control is
implemented in this language. As oTCL is an interpreted language,
this approach significantly reduces compilation time of the network
models. However, it also reduces the performance and resource re-
quirements of the simulator hampering the scalability of ns-2. ns-
2’s development was started in 1996 and, since then, it has been
widely adopted by the computer networking community.

GTNetS: Georgia Tech network simulator (GTNetS) is devel-
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oped to address the scalability issues of ns-2. In addition to this,
GTNetS provides a better representation of computer networks by
implementing a clear distinction between protocol layers. For ex-
ample, the nodes in GTNetS are simple containers where the net-
working interfaces, protocols and applications are “installed.” The
server applications are bound to ports and the client applications
connect to the servers using their address/port pairs. As these rep-
resentations mimic actual computer networks, the users can imple-
ment network models easily. GTNetS is implemented in C++ and
does not provide a front-end language for users: the simulator is
a class library, and the users import this library to implement the
network model.

INET: INET framework is the computer network simulation tool-
kit for the OMNET++ simulator. In OMNET++, the simulated ob-
jects are represented as modules. A module can be simple, which is
an atomic object, or compound, which is the combination of other
modules. The simple modules are, generally, implemented in C++.
However, compound modules are implemented in the custom Net-
work Description Language (NED). In a NED file of a compound
module the external interfaces (e.g., its parameters), the submod-
ules (i.e., other modules included) and the connections between the
submodules are defined. Simple modules also include a NED file,
which describes the interfaces the module exports to the NED en-
vironment.

The INET framework follows the OMNET++ architecture, where
the simple modules implement the queues/protocols, and compound
modules represent nodes/routers. The network model is also a com-
pound module that contains nodes, routers and the connections be-
tween them. Hence, the user implements the network model in
the NED language. The modules in INET are packaged according
to the network layer they correspond to; when programming the
network model, the user simply imports the protocols/applications
from the package corresponding to a network layer.

ns-3: Ns-3 is developed to address the scalability, memory leak
and extendibility problems of the previous network simulators. ns-
3 is programmed in C++; the network models can be programmed
in Python and C++. To reduce the footprint of the library, it is pos-
sible to turn off Python bridge completely. Ns-3 borrows most of
its architecture from GTNetS, but improves it by adding managed
memory and helper methods. To provide scalability, most of the de-
sign decisions of ns-2 are not carried to ns-3. Therefore, ns-3 is not
compatible with ns-2 and models in one have to be manually ported
to the other. Ns-3 development has started in 2005 and, since then,
most of components of ns-2 have been ported to the ns-3. Hence,
ns-3 also provides a rich set of networking interfaces, protocols and
softwares that can be used in simulations.

4. EVALUATION OF NETWORK
SIMULATORS FOR LARGE-SCALE NET-
WORK SIMULATIONS

This section evaluates the network simulators with respect to the
features that can aid the users in the development of large-scale
network simulations. We selected these features based on our ex-
periences in developing distributed network simulations, extending
the simulators and the requirements of the smart grid applications.

4.1 Transparency of Distributed Simulations
The setup of distributed simulations should be transparent to the

user; that is, the implementation of the network model for dis-
tributed simulations should not differ from the those of single-process
simulations. Otherwise, there might be a significant overhead in
porting a large-scale network model from single process simula-

Table 1: Distributed simulation support in network simulators
Network Simulator Difference in simu-

lation setup
Network topology
in each node

Middleware

ns-3 • Full MPI
GTNetS • Full LibSynk

INET •• Partial MPI
ns-2 •• Partial LibSynk

• nodes are assigned to processes •• nodes and links are assigned to processes

tion to distributed simulation. In addition to this, factors such as
the distribution of the network topology and the middleware used
to handle the communication between the processes also affect the
time needed to prepare the distributed simulation. Table 1 sum-
marizes the comparison of network simulators with respect to how
distributed simulations are programmed and represented.

GTNetS and ns-3 are designed to support the distributed simula-
tion with remote links, which are point-to-point links for handling
communication between nodes at different processes. To distribute
a network model, the user has to assign the nodes and applications
to the simulator processes. The initialization of the links and the
routing protocols, however, are the same for both distributed and
single process simulations. The full network topology is created at
each process in distributed simulations. Memory wise this is not
optimal, however, the simulator can calculate the routes to nodes at
different processes without user intervention in this way.

Parallel Distributed NS [12] (PDNS) is an extension to ns-2 that
adds the support for distributed simulations. Because ns-2 is not
designed for such simulations, the network model implementation
for distributed simulations differs significantly from single process
simulations. For example, the user has to create remote links to
connect nodes at different processes, assign IP addresses to remote
links and add routing entries for remote nodes. These aspects are
not required for single process simulations.

Although OMNET++ has extensive support for distributed sim-
ulations, INET framework was not designed for them. The user
has to ensure that modules, such as flat routing, are not used when
setting up a distributed simulation. In certain cases, this can lead
to users assigning IP addresses and routing tables, which might in-
crease the effort spent in implementing the network model.

OMNET++ and ns-3 use MPI [3] to handle the communication
between simulator processes. As MPI is a common platform for
clusters, setting up the distributed simulation environment for these
simulators can be a straight forward process. GTNetS and ns-2
(with PDNS) depend on the Real Time Infrastructure library lib-
synk [10]. Although this library is specifically designed for dis-
tributed discrete event simulations, it is not commonly used. As
such, setting up the distributed simulation environment for GTNetS
and ns-2 might involve a learning curve.

In all simulators, connections between nodes at different pro-
cesses has to be point-to-point links and the user has to manually
partition the network model into processes. The partitioning of the
network model, if not studied well, might lead to “unbalanced”
simulations increasing the execution time of the simulator. For ex-
ample, if the partition is realized over a link where there is too much
packet exchange, the simulator processes might spent most of their
time sending/receiving data. On the other hand, if most of the load
is pushed to one of the processes, that process has to execute more
events while others idling the resources.

4.2 Information Hiding
When programming a simulation, it is important that the pro-

grammer to be only concerned with networking concepts. Hence,
the simulator should aid the user by hiding its implementation de-
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Table 2: Information hiding in network simulators.
Network Simulator Information

hiding level
Front-end lan-
guage

ns-3 • C++/Python
GTNetS ◦ C++

INET •• Ned
ns-2 •• oTCL

◦ no, • partial, and •• full information hiding

tails from the user. Exposing unrelated API to the user might cause
the users to program the simulations in an undesired way, which
can increase the possibility of errors. The comparison of network
simulators with respect to this feature is summarized in Table 2.

In GTNetS, the full API of the simulator is exposed to the user,
as it does not provide a front-end language. Even though C++
allows information hiding, some accessible methods (e.g., public
methods) can still be unrelated to the users. Thus, the user has to
discover the correct way of initializing and using the classes repre-
senting the network appliances, which can introduce a significant
learning curve. GTNetS comes with example network models that
provide a good starting point. The user still has to refer to the
API specification for complicated network models, which can be
an overwhelming task due to the complexity of the simulator.

In both ns-2 and INET the network models are programmed in
a front-end language. ns-2’s front-end language is an API for the
scripting language oTcl. The developers of the simulator explicitly
states which C++ class methods and/or attributes can be accessed
from oTCL scripts. This allows the developers to expose a simpli-
fied API to the ns-2 user, reducing the learning curve involved in
developing simulations. The disadvantage of using a full-fledged
scripting language is that the interpreter of the language is compu-
tationally expensive, which reduces the performance of the simula-
tor.

As INET framework is based on OMNET++, it uses the NED
language for programming the network models. NED is a domain
specific language designed to express the connections and the com-
positions of the modules. Since it is not a scripting language, it
does not suffer from the performance degradation as ns-2. In ad-
dition to this, OMNET++ provides a configuration file for setting
up parameters specific to a simulation. The user can setup general
parameters like the location of the nodes for animation in the NED
file. However, parameters such as application transfer rate can be
set in the configuration file. This way, the same network model
code can be used with multiple configurations.

ns-3 provides two separate APIs: 1) The “front-end" API, which
includes the helper classes that ease the initialization and the usage
of the classes representing the network appliances. 2) The “back-
end” API includes all the details of the simulator. In ns-3, the helper
classes can only be called from user programs; that is, using them
at the back-end is not permitted, and yields to compilation errors.
However, the users are not limited to using the helper classes; they
can use the back-end API for initialization, which can lead to long
simulation model codes. The benefit of providing two APIs is that
the network models can be implemented in the language the sim-
ulator is programmed with. Thus, the simulator does not need to
provide a front-end language and suffer from the performance prob-
lems associated with the interpretation. Note that the front-end API
of ns-3 has bindings for Python programming language, which al-
lows the user to program simulations with Python. However, the
aim of these bindings is not to hide implementation details (be-
cause C++ and Python use the same API) but to provide a platform
for users not familiar with the C++ programming language.

Table 3: The types of topology creators support the network
simulators.

Simulator Grid Star Dumbbell Tree Internet
ns-3

√ √ √
× �

GTNetS
√ √ √ √

�
INET × × × × �
ns-2 × × × × �√
supported by the network simulator,× not supported by the simulator

and� support through external tools.

4.3 Topology Generators
Programming the topology of a large-scale network can be a

very time consuming and error prone task. The network simula-
tors can assist the users in this task by providing topology gener-
ators. Topology generators are subroutines/tools that automate the
creation of certain network topologies (e.g., n-by-m grid topology).
Table 3 lists the topology generators supported by the network sim-
ulators.

ns-2 does not support generators for simple topologies (i.e., Grid,
Star and Dumbbell); thus, most of the time the user has to manually
program the desired topology. The support for more complicated
internet-like topologies, on the other hand, are provided by external
tools. These tools convert the output of the internet-like topology
generator tools, like GT-ITM [14], to oTCL scripts. These tools,
however, are not part of the simulator (i.e., not distributed with the
simulator) and, hence, they might involve a learning curve.

INET also does not provide generators for simple topologies.
There are external tools that generate NED files for more compli-
cated topologies. Similar to ns-2, these tools are not part of the
framework and involve a steep learning curve.

Both ns-3 and GTNetS have methods for generating simple topolo-
gies. In addition to this, they also provide methods for importing
the output of the topology generator tools and internet traces. With
these, the users can create topologies of their network models with
one simple method invocation. Other topologies still need to be
manually implemented.

For all simulators, it is possible to modify the generated topology
to fit the needs of the network model at hand.

4.4 Lightweight Routing Protocols
For large simulations, the user will end up creating many nodes

with multiple connections. However, managing the routing tables
of these nodes with a progressive routing protocol can consume
too many resources: the frequent route discovery messages slow
down the simulator and generate too many traces. If the routing
algorithm is not of importance to the network model, the user can
greatly benefit if simulator provides a lightweight routing protocol.
Table 4 shows the lightweight routing protocol(s) that can be used
for large-scale simulations.

ns-2 provides two routing settings that can greatly reduce the
overhead caused by routing protocols. The first setting is manu-
ally filling the routing tables. Although this method eliminates the
time spent in route calculations, manually adding entries to routing
tables can be a complicated task for large-scale simulations. The
second setting is using global routing algorithms: static and ses-
sion. The static routing algorithm calculates the routing tables for
the nodes before the simulation, and during the simulation these ta-
bles are not updated. Since the whole network topology is known
in a simulator, Dijkstra’s shortest path algorithm is used for cal-
culating the routes. The session routing algorithm is identical to
the static routing but it recalculates the routes when the topology
changes (due to link/node failures).

INET framework provides modules for all the routing protocols
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Table 4: Lightweight routing protocols for large-scale network
simulations

Network Simulator Routing Protocol
ns-3 NIX-Vector

GTNetS NIX-Vector
INET link state, flat
ns-2 static, session

in the internet. From these, algorithms based on link state (e.g.,
OSPF) can be used in large scale simulations to reduce the over-
head involved in the routing. In addition to this, the framework
provides the flat routing algorithm, which is very similar to ns-2’s
static routing. The users can also fill the routing tables manually.

GTNetS supports all the routing settings supported by ns-2. GT-
NetS also supports the lightweight routing protocol NIX-Vector
routing [11]. NIX-Vector routing algorithm resolves the issues re-
lated to routing in large-scale simulations by: 1) calculating the
routes on demand 2) caching the routing entries.

In ns-3, NIX-Vector routing algorithm, global routing algorithm
and manually filling the routing tables can be used to reduce the
routing protocol overhead. As discussed before, manually adding
routing entries can be complicated task. Therefore, using global
routing or NIX-Vector routing algorithm are preferable. The global
routing algorithm calculates the routes once before the simulation,
similar to ns-2’s static routing. It can also be configured to recalcu-
late routes when a link/node state change occurs. This behavior is
similar to session routing in ns-2.

4.5 Network Error Models
To assess the efficiency and the robustness of protocols/applica-

tions, it is important to test their behavior with respect the network
failures. Hence, the type of failures the simulator supports is an
important aspect.

ns-2, ns-3 and GTNetS support a wide variety of error models.
Here, the users can schedule link/node failures, packet loss/errors
at specific simulated times or based on random variables. Certain
packets can also be marked to be lost at the beginning of the simula-
tion. For large-scale simulations, this feature can reduce the effort
in the analysis phase as the user can focus only on the behavior of
the protocols/applications after/before the marked packets.

Contrary to other simulators, INET framework separates error
simulation from the network model. The framework provides a
scenario module, which reads an XML file. In this file, the user
can schedule events that change parameters of the network model.
Although the scenarios allow the user to control a variety of param-
eters during the simulation, the user has to learn how various errors
can be simulated by changing these parameters. Moreover, the sim-
ulator does not provide random variables. The user has to generate
the times based on the desired random distribution manually and
schedule events at these times, which can be time consuming.

4.6 Network Model Evaluation
For a large-scale network simulation, it is important that the net-

work model reaches a desired goal, such as bytes sent from a node.
Otherwise, the results from the simulation might be inconclusive.
The network simulator can help the user by providing facilities to
monitor the status of the simulation, the simulated networked hard-
ware and software. In this way, the user can evaluate the network
model and change certain simulation parameters during the simu-
lation.

ns-2 and ns-3 do not provide such monitors; hence, the user has
the wait for the end of the simulation to analyze the trace and verify
that the network model was correct (i.e., reached desired goals).

Table 5: Options for tracing the network models. For all simu-
lators, the trace output analysis is realized by external tools.

Network Simulator Trace
Options

Animation
support

Statistics
gathering

ns-3 • ◦ ? Offline
√

GTNetS •? Realtime
√

INET • Realtime
√

ns-2 • Offline ×
• packets de-/queued at the nodes, ◦ packet capture for each node
and ? user defined traces

If the network model has failed to reach the goals, then the user
has to alter the parameters of the network model and restart the
simulation. This is an impractical process as large-scale network
simulations tend to take a long time.

OMNET++, which INET framework is based on, and GTNetS
allows the user to display the network model before the simula-
tion. This can be used for verifying the connections of the network
model. However, these simulators also do not provide means for
the user to change the parameters according to the status of the net-
work model.

4.7 Trace Analysis
The output from a network simulator should provide detailed in-

formation about what has happened during the simulation. Thus,
the users can analyze and asses the performance of the protocols
and the applications. Most network simulators provide such a de-
tailed output with simulation traces and logging. For large network
simulations, however, these can be too long and, as such, extracting
information can be an overwhelming process. Here, the network
simulator can greatly help the user if it allows the user to control
the nodes and links that are to be traced. In addition to this, anima-
tion of the packets and statistics collected on packet delivery can
also provide an overview on the interesting points about the simu-
lation. Table 5 lists the features provided by the network simulators
to aid the trace analysis.

In ns-2, the traces detail the packets de-/queued at the nodes. The
user can trace all the queues of all nodes or create specific traces
for the input/output queues at the ends of a link. These traces are
saved to a custom trace file, a text file with special syntax. ns-
2 does not provide tools for analyzing the trace files. However,
standard regular expression tools (like grep) can be used. These
trace files can also be animated offline (i.e. after the simulation
completes) with the NAM (network animator) tool that is part of
the simulator. The down side of animation is that it “pollutes” the
network model code with animation setup code such as setting up
node coordinates and color. This is especially problematic with
large-scale network models, where the model code can be too long.
Adding the animation setup code to the network model makes it
even longer which, in turn, hampers the maintenance.

INET framework benefits from OMNET++’s user interface tools.
These tools provide the user the ability to control the simulation
(execute, pause, step), view the trace as the simulation executes,
visualize the network, visualize the status of the simulated objects
and animate the whole network or a part of it in realtime (i.e. while
the simulation is executing). The animation setup is, usually, real-
ized while programming the network model. Because the network
model code is separated from the simulation parameters in OM-
NET++, the “pollution” problem described above is not present in
INET framework. In addition to these, the simulator creates a trace
file that contains information similar to the trace files of ns-2. The
framework comes with modules to save the trace files in ns-2’s trace
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file format. Hence, tools developed for ns-2’s trace analysis can be
used with INET framework.

ns-3 and GTNetS provide an extensible tracing mechanism that
uses a callback mechanism. The user can attach trace objects to
various attributes at nodes and links. GTNetS includes an animator
where the users can see the network trace in realtime. The ani-
mator can be programmed to only view the topology, start show-
ing the trace a specific time in the simulation and/or selectively
enable/disable the animation on the nodes. ns-3 provides an an-
imation interface where the users can build their own animation
frameworks. ns-3 comes with NetAnim tool, which is a prototype
tool for this interface. NetAnim is a limited offline animation tool
in that it can only animate networks with p2p links. In both simula-
tions, the animation setup is scattered over the network model code
which can complicate the model code significantly.

In ns-3, it is also possible to generate packet traces for each
node in the packet capture format (PCAP). PCAP is a very popular
packet capture format and many tools are available for analysis of
these files. These files provide an expressive querying language.
These traces are generated for all nodes, which might be hard to
analyze for large network simulations.

INET framework, GTNetS and ns-3 have built-in statistics gath-
ering functionality, which can generate histograms and cumulative
distributions about incoming/outgoing packets. This statics gather-
ing functionality is designed to be extendable, where the users can
easily integrate other statistics gathering methods to the simulator.
The statistics gathering is also realized in memory and the results
are written to a file at the end of the simulation. This increases the
performance of the simulator while increasing the memory usage.
In large network simulations, statics gathering can ease the analysis
process as they can aid in pointing out anomalies.

5. OPEN ISSUES ON NETWORK
SIMULATION

From the evaluation in the previous section, we have identified
the following open issues about network simulators that can aid in
large-scale network simulation:

Lack of Network Model Verification: The network simulators
do not provide means for altering the parameters of the simulation
once the it has started. Hence, the user has to wait for the simulation
to complete, verify manually that the network model reached the
desired goals, and restart the simulation with altered parameters if
the model does not reach the goal. This is an impractical and error
prone task.

Lack of Load Balancing: The reduction in the execution time
of the simulator with distributed simulation depends on the user’s
ability to partition the network model before the simulation. How-
ever, it is very hard to anticipate the loads at the links and the nodes.
Therefore, the user might not be able to partition the network model
efficiently, which causes an increase in the execution time of the
simulator.

To illustrate the effects of unbalanced distribution, we created
10-by-10, 20-by-10, 40-by-10 grid models with 12, 14, 16 and 20
constant bit rate applications, and simulated these networks in ns-
3 with 2 processes. Equal number of nodes is assigned to each
process, where process 0 gets first n nodes and process 1 gets the
nodes between n and 2n. A node in each process executed the sink
application; constant bit rate applications assigned to a process sent
packets to the sink application of that process. The assignment of
the applications are used for generating balanced and unbalanced
networks. For example, with 12 applications, the unbalanced net-
work is achieved by assigning 7 applications to process 0 and 5

applications to process 1. The balanced network is achieved by
assigning 6 application to each process. Each constant bit rate ap-
plication is directed to send UDP packets of 1000bytes every 0.4
seconds for 1000seconds to the sink node (NIX-Vector routing is
used in the simulations).

Table 6 presents the execution time (in seconds) of the simula-
tor for the balanced and unbalanced network models. Here, we
can see that the balanced executions take much less time than the
unbalanced ones. With 12 applications, the unbalanced 10-by-
10 network executes 3.7 seconds more than the balanced version,
whereas the unbalanced 40-by-10 network executes 5.7 seconds
more. In the 40-by-10 network with 20 applications, the execu-
tion time of the simulator with the unbalanced network increases
by 25.8 seconds. These results show that how balanced the distri-
bution increases the execution time of the simulator. This increase
gets worse as the network model gets larger. Hence, we conclude
that the distribution of the network model plays a crucial role in the
simulation of large-scale networks.

The problems described above can be addressed by introducing
runtime steering to the network simulator. Runtime steering has
been proposed as a way to monitor a program’s execution and alter
the execution if it does not reach the desired goals [7]. In sum-
mary, a runtime steering framework consists of monitors and steer-
ing rules. The monitors are attached to the program and they extract
information about the execution. The steering rules, on other hand,
contain goals over the monitored information and actions. These
rules are, usually, expressed in a custom build language. If a goal is
violated during runtime, the action corresponding to it is executed.
This action alters the program such that monitored information falls
within the boundaries of the goals.

Runtime steering for network simulators would allow the user
to alter the network model when it does reach the desired goals.
However, altering the simulator might lead to an erroneous sim-
ulation. For example, a packet might reach a destination before
its predecessor when an alteration increases the speed of a link. To
prevent such situations, the framework can be coupled with a model
checker. The changes in the parameters of the network model that
might lead to inconsistencies can be identified. These changes can
be expressed as constraints in the language of the model checker.
Hence, before the execution of the steering rules, the model checker
evaluates whether the current status of the network model violates
the constraints. If so, the model checker stops the steering.

6. CONCLUSION
In this survey, we evaluated the state-of-the-art network simu-

lators, ns-2, INET, GTNetS and ns-3, with respect to the features
that can aid the users in large-scale network simulations. Based on
our experience in large-scale network simulations and the require-
ments from the smart grid applications, we identified automated
topology generators, information hiding, support for lightweight
routing protocols, network error simulation, transparency of dis-
tributed simulations, evaluation of the network model during sim-
ulation and trace analysis as features that can aid the users during
the development, execution and analysis phases of the simulation.

From our evaluation, we conclude that there is room for improve-
ment in network simulators for the simulation of large-scale net-
work models. Especially, the simulators included in this survey
have limited support for transparency of distributed simulations,
information hiding and trace analysis: For distributed simulations,
the user has to adapt the network model for distributed simulations:
the nodes at different processes need to be connected with point-
to-point links, and the user needs to ensure that network model is
balanced. The lack of information hiding leaves the users with mul-
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Table 6: Effects of unbalanced distributions to execution time
10-by-10 grid 20-by-10 grid 40-by-10 grid

Execution Time (s) Execution Time (s) Execution Time (s)
# of Applications Balanced

Model
Unbalanced
Model

Balanced
Model

Unbalanced
Model

Balanced
Model

Unbalanced
Model

12 24.6 28.3 31 36.2 55.5 61.2
14 27 31.4 37.9 43.4 66 76.3
16 29.3 35.1 44 51.5 70.4 89.1
20 38.2 43.8 50.1 62.9 89.2 115

tiple ways of programming the network model; thus, the user might
initialize the model improperly leading to errors during simulation.
Too much information hiding, on the other hand, requires the user
to learn a new language and/or hamper the performance of the sim-
ulator. After a large-scale network simulation, the users are left
with huge trace files, and the network simulators rely on other tools
for analysis. These can be greatly improved with the recent meth-
ods from high-performance computing and software engineering
literature.

We also observed two open issues related to the usability of the
simulators. The first one is that the simulators do not provide means
for realtime evaluation of the network models. The programs for
large-scale network models tend to be very long; as such, it is very
hard for the user to ensure that the network model parameters are
setup correctly or the network model meets the goals. Currently,
this is realized by analyzing the trace files generated by the simu-
lator. If the simulation does not reach a goal, the user has to alter
the parameters and restart the simulation. This process is time con-
suming and error prone.

The second issue is related to distributed simulations. Here, the
user has to partition the network model into processes. However,
such partitioning can lead to an unbalanced distribution increasing
the overall execution time of the simulator. To illustrate the ef-
fects of the distribution on the execution time of the simulator, we
conducted execution time analysis with 2 process distributed sim-
ulations. We implemented 10-by-10, 20-by-10 and 40-by-10 grid
network models where each process is assigned an equal number
of nodes. Then, we added 12, 14, 16 and 20 applications to these
network models. However, we assigned the applications such that
4 network models were balanced, equal number of applications is
assigned to each process, and 4 were unbalanced, one process is as-
signed 5 applications and the remaining applications are assigned
to the other process. On the 10-by-10 grid network, the execution
time of the simulations with unbalanced models has increased on
average by 4 seconds. This average has increased to 15 seconds for
the 40-by-10 grid. These results show that how balanced the distri-
bution is does indeed effect the execution time of the simulator.

Both of these open issues can be addressed by introducing run-
time steering to network simulators. In this survey, we also discuss
how a runtime steering framework can be provided to the network
simulators. As future work, we plan to develop a steering frame-
work with a model checker for network simulators.
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