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Overview 

Two types of clustering 

Evolutionary 

Spectral 

Two types of data 

Topological – uses information 
about connections in the grid 

Derived – reporting from within 
the grid 

Two data sources 

Electrical distance → topological 

PMU data → derived 
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Overview (cont.) 

Goal: group generators which have similar behavior after a disturbance 

Clustering from topological data groups generators together based on their 
proximity and connectivity 

Predicts which generators should have similar behavior 

Clustering from derived data uses the observed behavior of the generators 
to cluster 

Should be more reliable, but relies on data from after the disturbance  

We compare the results of one type of clustering on topological data with 
another type of clustering on derived data 
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Fiedler Clustering 

Input:  

Graph – 𝐺 = (𝑉, 𝐸, 𝑤) where 𝑉 is a set of entities, 𝐸 is a set of relationships 
between elements of 𝑉, 𝑤 is a weight function on the edges indicating a level of 
similarity between connected entities 

Integer 𝑘 indicating number of clusters to break 𝑉 into 

Output: 

Partition of 𝑉 into 𝑘 groups, 〈𝑉1, 𝑉2, … , 𝑉𝑘〉, so that their union is 𝑉 and 
𝑉𝑖 ∩ 𝑉𝑗 = ∅ for all 𝑖 ≠ 𝑗.  

Two elements within the same partition should be more similar than two elements in 
different partitions 
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Introduction 
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Fiedler Clustering 

Given a weighted graph we calculate the weighted Laplacian,  

Let 𝑑𝑖 =  𝑤(𝑖, 𝑗)𝑖,𝑗 ∈𝐸 , then the Laplacian is defined as 

 

 

 

Smallest eigenvalue is always zero (rows sum to zero) 

Number of zero eigenvalues indicates number of connected components in the 
graph 

Eigenvector associated to smallest non-zero eigenvalue is called the Fiedler 
vector 

Vertices make a continuous “choice” between -1 and +1, −1 ≤ 𝑓𝑖≤ 1 

Partition vertices into two groups – negative and positive 

Zero values split between the two groups arbitrarily 
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Background 

𝐿 𝐺 = 𝐿𝑖,𝑗 𝑖,𝑗=1..𝑛
  where 𝐿𝑖,𝑗 =   

𝑑𝑖 𝑖 = 𝑗

−𝑤(𝑖, 𝑗) 𝑖, 𝑗 ∈ 𝐸

0 𝑖, 𝑗 ∉ 𝐸
 



Fiedler Clustering 

Some options: 

How to split the vertices based on the Fiedler vector? Positive and negative as 
we have here, or less than midpoint vs. greater than midpoint? 

How to pick the next element of 𝑃 to split? 
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Algorithm 

• Input: 𝐺 = (𝑉, 𝐸, 𝑤), 𝑘 ∈ ℕ 
• 𝑃 ← {𝑉} 
• for each 𝑝 in 𝑃 until 𝑃 = 𝑘 

• 𝐿 ← 𝐿(𝐺[𝑝]) 
• 𝐹 ← 𝑓𝑖𝑒𝑙𝑑𝑒𝑟(𝐿) 
• 𝑝− ← vertices with negative Fiedlers in 𝐹 (and some zeros) 
• 𝑝+ ← vertices with positive Fiedlers in 𝐹 (and some zeros) 
• 𝑃 ← 𝑃 ∖ 𝑝 ∪ {𝑝−, 𝑝+} 

• RETURN 𝑃 

Partition of vertices 

Laplacian of graph restricted to vertices in p 

Replace p with the partition of p into two sets 



Evolutionary Clustering 

Electrical distance, 

Relationship between electric power transaction and voltage phase angle 

difference. 

For a network of resistors, conductance matrix 𝐺, 

 

 

 

 

 

For a power system, quadrant of the PF Jacobian, 
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Electrically Cohesive Clusters 



Evolutionary Clustering 

December 2, 2013 PNNL-SA-99604 10 

Measures of clustering quality 

Electrical Cohesiveness Index, ECI (i.e., tightness index) 

𝐸𝐶𝐼 = 1 −
𝑒 𝐶

𝑒 𝑚𝑎𝑥
= 1 −

  𝑒𝑖𝑗𝑗∈𝑀𝑖

𝑛
𝑖=1

  𝑒𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 

Between-cluster Connectedness Index, BCCI 

𝐵𝐶𝐶𝐼 = 1 −
ℎ 𝐶

ℎ𝑚𝑎𝑥
= 1 −

  1/𝑒𝑖𝑗𝑗∉𝑀𝑖

𝑛
𝑖=1

  1/𝑒𝑖𝑗
𝑛
𝑗=1
𝑗≠𝑖

𝑛
𝑖=1

 

Aggregate clustering fitness, f 

𝑓 = 𝐸𝐶𝐼𝛼 ⋅ 𝐵𝐶𝐶𝐼𝛽 ⋅ 𝐶𝐶𝐼𝛾 ⋅ 𝐶𝑆𝐼𝜁 ⋅ 𝐶𝐶 

Cluster Count Index, CCI 

𝐶𝐶𝐼 =  𝑒
− ln 𝑝 − ln 𝑝⋆

2

2𝜎2  

Cluster Size Index, CSI 

𝐶𝑆𝐼 =  𝑒
− ln 𝑠  − ln 𝑠⋆

2

2𝜎2  

Connectedness Index, CC 

𝐶𝐶 =  
1 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

 



Evolutionary Clustering 

Parameter Value 

Representation String of integers indicating connections 

Fitness function 𝑓 = 𝐸𝐶𝐼 ×  𝐵𝐶𝐶𝐼 ×  𝐶𝑆𝐼 ×  𝐶𝐶𝐼 

Recombination method 1-point crossover 

Recombination probability 80% 

Mutation method Random resetting with the feasible set 0,1, … ,𝑚𝑖  ∀𝑖 

Mutation probability, 𝑝𝑚 1/𝑛 

Parent selection Tournament selection without replacement 

Survival selection Roulette wheel with elitism 

Population size 400 

Initialization Randomly generate clusters 

Termination condition Run until sufficient quality is achieved 
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GA configuration and parameters 
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GA configuration and parameters 

 



Outline 

Overview 

Clustering Approaches 

Fiedler vector 

Evolutionary algorithm 

Case Studies 

IEEE 50 generator system 

Polish system 

Applications of Clustering 

December 2, 2013 PNNL-SA-99604 13 



IEEE 50 generator system 

145-buses, 50-generators 

Internal area has 16 generators, 
external has 34 

Generators modeled using classical 
machine dynamics with 2nd order 
swing equation. 

Short-circuit fault at Bus 116 on 
line 116–136 for 60ms, then line 
tripped 

Data:  

Oscillations of rotor angles in 
external system generators 

Ybus matrix → electrical distance 
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Rotor angle time series 
for each generator 

Nonzeros in Ybus matrix PNNL-SA-99604 



Fiedler cluster, IEEE 50 

Algorithm requires a graph: vertices are generators, what are edges? 

Create 𝜖-nearest-neighbor graph from rotor angle data 

Need notion of distance between generators based on their rotor angle time 
series 

pseudo-distance based on discrete Fourier transform of time series vector 

Euclidean distance between phase vectors of the DFT, weighted by absolute value of 
difference between amplitude vectors 

𝑣𝑖 , 𝑣𝑗 ∈ 𝐸 if the distance is less than some specified 𝜖 

Larger or smaller 𝜖 will generate more or less sparse graph 

Weights must be similarities, not distances, so  

𝑤 𝑣𝑖 , 𝑣𝑗 =  
1

𝑑(𝑣𝑖,𝑣𝑗)
 if there is an edge between 𝑣𝑖  and 𝑣𝑗  

Set number of clusters, 𝑘 = 10 
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Setup 



Fiedler cluster, IEEE 50 
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Results 

𝜖 = 4 



Evolutionary clustering, IEEE 50 

Algorithm is designed for clustering buses rather than generators 

System has 145 buses – generators connect to 50 of those buses 

We cluster the generators based on which cluster its bus is in 

Use the electrical distance matrix, derived from the Ybus  
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Setup 



Evolutionary clustering, IEEE 50 
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Results 



Visual inspection of the time series for each clustering method shows that 
both do reasonably well 

Both have some clusters that don’t appear to be good fits 

Both have many clusters that appear to behave very similarly 

Clusters from Fiedler method generally intersect a small number of clusters 
from evolutionary method 

Generally taking a large portion of one cluster and smaller pieces of other 
clusters. 
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Comparison 
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Model reduction 

Grouping generators that swing together and selecting a characteristic generator 
from each group to represent that group’s behavior 

Defensive Islanding 

Controlled partitioning as response to instabilities 

Isolate self-sufficient portions (islands) 

Incorporate electrical characteristics to identify portions that could be self-
sufficient 

Market Power Potential 

Small group of generators increase their revenue while others remain constant 

Clustering can identify generators with market power 

Optimal placement of PMUs 

PMU installation is expensive 

Use clustering methods to identify groups that can share a PMU 
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Applications 



Exploring other types of spectral clustering 

Further comparison with other clustering methods 

Implementation of some of the applications mentioned 
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Future Work 
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