
Carnegie Mellon

Power System Probabilistic and Security
Analysis Using Commodity High
Performance Computing Systems

Tao Cui (Presenter)

Franz Franchetti

Dept. of Electrical and Computer Engineering

Carnegie Mellon University

tao.cui@ieee.org, franzf@ece.cmu.edu

This work was supported by NSF through awards 0931978 and 1116802.

Carnegie Mellon

 New players: stochastic,
varying renewable

 Challenges
 Non-dispatchable, stochastic

in nature, large variances

 Great impact on the grids:
present and future trend

Smart Grid Challenges

2 [N1] NERC Special Report: Accommodating High Levels of Variable Generation, 2009
[N2] NERC Transmission System Standards – Normal and Emergency Conditions

 Aged, varying conditions &
close to limit operations

 Challenges
 High contingency possibility w/

severe consequences

 Varying grid conditions require
merging offline to online

 Requirements from regulators (NERC)
 Probabilistic analysis approaches from distribution feeder to bulk grid[N1]

 Extensive contingency analysis for online / real time[N2]

 Online computation tool for the smart grid challenges

The Source: Probabilistic The Grid: Security

Carnegie Mellon

Commodity CPUs: No Free Speedup

 Top 500 HPC in every substation?

 Peak performance = fully utilize hardware capability

 Much more complicated architecture ~ lose performance easily

Performance in “flop/s”: floating point operations per second, the higher the better

Core i7 3970x
6-cores + AVX
192 Gflop/s
~$900 (Amazon) Image: Intel

Q4’2012:

500 Fastest
Supercomputers
Worldwide

3

Carnegie Mellon

Supercomputer

(Fujitsu NWT) 2000s

High-end desktop (Dell)

2012

Commodity CPUs: Opportunity & Challenge

4
[hwloc] the hardware locality tool from open-mpi.org
[Intel_opt] Intel® 64 and IA-32 Architectures Optimization Reference Manual

 Memory hierarchy: #cache memory system

 Multilevel parallelism:

 *Multi-thread on multi-core CPU

 ^Superscalar instruction scheduler: parallel scheduler inside each core


$SIMD (Single Instruction Multiple Data): Intel AVX/SSE instruction set

1 2 4 4 5 1 1 3

6 3 5 7 6 3 5 7

5 1 1 31 2 4 4

“+”: vaddps ADD

[Intel_opt]

Source: Intel.com

*Multi-core
$SIMD: Intel AVX

#L1, L2, L3

Cache

memory

system

^Superscalar

instruction

scheduler

Main Memory

Image: Intel.com

Carnegie Mellon

Challenges for Smart Grids Applications

 Computing
 Exponential growth (Moore’s law)

 Peak perf: fully using all computing units

 Lose performance easily

 Numerical application development
 Example: MMM on Core 2 Duo

 Gap between SW/HW for power system

 Performance tuning for HW

 Best math library? or best algorithm?

5

Goal: a win-win result
Fully utilize the modern commodity computing systems, make new
important and difficult smart grid probabilistic and security analysis
problems solvable… in real time.

?

≈

Supercomputer

(Fujitsu NWT) 2000s

High-end desktop

(Dell) 2012

160x

Carnegie Mellon

Content

 Distribution feeder probabilistic load flow (DPLF)

 Transmission grid probabilistic load flow (TPLF)

 AC contingency calculation (ACCC)

6

Goal: a win-win result
Fully utilize the modern commodity computing systems, make new
important and difficult smart grid probabilistic and security analysis
problems solvable… in real time.

Carnegie Mellon

 Distribution feeder probabilistic load flow (DPLF)

 Transmission grid probabilistic load flow (TPLF)

 AC contingency calculation (ACCC)

Substation

Distribution

Feeders

Transmission Grids

Substation

...
Distribution Feeders

Wind Farm

Power Plant Power Plant

 

 

,

,

Injection Network

Injection Network





P P V δ

Q Q V δ

Power Flow Model:

Algebraic Equation

Power Plant

Solar Panel

Wind Generator

Customer Load

Wind Speed

Load Level

P
ro

b
a

b
ili

ty

Probabilistic

Distribution Function

Wind Speed

P
ro

b
a

b
ili

ty

Probabilistic

Distribution Function

Outline: HPC in Substation

7

TPLF: Transmission PLF

ACCC: AC Contingency

DPLF: Distribution PLF DPLF: Distribution PLF

Carnegie Mellon

Distribution PLF: Background

 Fundamental tool for probabilistic analysis
 Pseudo-measurements [Ghosh:1997]

 Wind in distribution systems [Jorgensen:1998] [Caramia:2007]

 Solar in distribution systems [Ruiz:2012]

 EV in distribution systems [Li:2012]

 Monte Carlo simulation as gold standard

 Unique challenges in distribution systems
 Unbalanced, multi-phase, complicated device models

 Nonlinearity: regulator, control devices

 Monte Carlo simulation: robust, generally-applicable, UNFEASIBLE online?

 Our approaches[Cui_PES:2012]

 Hardware / software performance engineering perspective

 Pushing Monte Carlo simulation practical for online operations

8

Input with
Randomness

Distribution
Load Flow

Model

Output
Probability

Features

Physical

Model

y

x

[Cui_PES:2012] Tao Cui and Franz Franchetti.
“A Multi-Core High Performance Computing Framework for Probabilistic Solutions of Distribution Systems”.
IEEE PES-GM 2012

Carnegie Mellon

9

Our Approach

 Random number generator
 Basic uniform Pseudo RNG + transformation for different PDFs

 Parallel strategy for multi-thread implementation

 Optimized parallel distribution load flow solver
 Code optimizations

 Highly parallel implementation for Monte Carlo applications

 Density estimation & visualization
 Kernel density estimation

Carnegie Mellon

10

Load Flow Algorithm

 Distribution system:
 Radial , high R/X ratio, varying Z, unbalanced

 NOT suitable for transmission load flow

 IV Forward / Backward Sweep (FBS)[Zimmer:1995]

 Implicit Z-matrix, detail model, fewest flops

 Generalized component model[Kersting:2006]

 One terminal node model:
Constant PQ:

 Two terminal link model:

          

         

abc abc abcn m m

abc abc abcm n m

I c V d I

V A V B I

   

   

     
*

abc abc abcS V I 

One Terminal

Node Model

A

B

C

[Vabc]

[Iabc]

[Sabc]

Source: IEEE PES Distribution

System Analysis

Subcommittee

IEEE 37 NodeTest Feeder:

Based on an actual feeder in California

Backward:

Forward:

[Zimmer:1995] R. Zimmerman, “Comprehensive distribution power flow: modeling, formulation, solution algorithms and analysis,”
Ph.D. dissertation, Cornell University, 1995.
[Kersting:2006] William Kersting, Distribution System Modeling and Analysis.CRC, 2006

Two Terminal

Link Model

Node n Node m

A

B

C

A

B

C

[Vabc]n [Vabc]m

[Iabc]m[Iabc]n

Carnegie Mellon

11

Code Optimization

 Data structure optimization
 Transform Baseline C++ to array access, exploit spatial/temporal locality

 Algorithm-level optimization: pattern & unrolling
 Pattern based matrix-vector multiplication for Kersting’s algorithm

 Reduce unnecessary operations

 Unrolling innermost loops

 Similar to [Belgin:2009]: pattern SpMV

N0

N2

N3 N4 N5

N1

Load

Substation

Load Load Load

Load

N0

N2 N1

N3 N4 N5

C++ Tree Structure

pN0

pN1

pN2

pN3

pN4

Forward

Sweep

Pointer

Array

pN5

pN5

pN4

pN3

pN2

pN1

Backward

Sweep

Pointer

Array

pN0

Array Access

N5 Data:

Parameters

Current

Voltage

N4 Data:

Parameters

Current

Voltage

Consecutive

in Data Array
...

switch (mat_type){

case real_diag_equal_mat:

output[0] = *constant * input[0];

...

output[5] = *constant * input[5];

break;

case imag_diag_equal_mat:

output[0] = -*constant * input[3];

output[1] = -*constant * input[4];

output[2] = -*constant * input[5];

output[3] = *constant * input[0];

output[4] = *constant * input[1];

output[5] = *constant * input[2];

break;

...

}

mat_type

a,0,0,0,b,0,0,0,c a,b,c
+

Full Matrix
Compressed

         

         

abc abc abcn m m

abc abc abcm n m

I c V d I

V A V B I

   

   

[Belgin:2009]. M. Belgin, G. Back, and C. J. Ribbens,
“Pattern-based sparse matrix representation for memory-efficient SMVM kernels,”
in Proceedings of the 23rd international conference on Supercomputing, ser. ICS ’09. New York, NY, USA: ACM, 2009, pp. 100–109.

Carnegie Mellon

 Data level (SIMD)

 Task/core level

 Realtime MCS scheduler: task decomposition, double buffer, auto-balancing)

 Fully utilize computation power of multi-core CPUs

SIMD FBS Load Flow in Buf AN

SIMD FBS Load Flow in Buf A2

SIMD FBS Load Flow in Buf A1

Real Time Interval

(SCADA Interval)

Scheduling Thd 0

Computing Thd 2

Computing Thd 1

Computing Thd N

Sync Signal

KDE in all Buf Bs Result Out

SIMD FBS Load Flow in Buf BN

SIMD FBS Load Flow in Buf B2

SIMD FBS Load Flow in Buf B1

Sync

Signal Out

Switch Buffer A,B

KDE in all Buf As Result Out

RNG: Random Number Generator

KDE: Kernel Density Estimation

12

Parallel MCS with Real Time Considerations

Sample FBS Load Flow Result

Sample SIMD FBS Load Flow Result

SIMD Instructions

Scalar Instructions

Scalar Solver:

Vectorized Solver:

Vector Register:

 4 floats in SSE

Scalar Register:

1 float

Carnegie Mellon

Details: Performance Gains

13

Problem Size
(IEEE Test Feeders)

Approx.
flops

Approx. Time /
 Core2 Extreme

Approx. Time
/ Core i7

Baseline. C++ ICC –o3
(~300x faster then pure
Matlab scripts)

Comments

IEEE37: one iteration 12 K ~ 0.3 us ~ 0.3 us 0.01 kVA
mismatch

SCADA Interval:
4 seconds

IEEE37: one load flow (5 Iter) 60 K ~ 1.5 us ~ 1.5 us

IEEE37: 1 million load flow 60 G ~ < 2 s ~ < 1 s ~ 60 s (>5 hrs Matlab)

IEEE123: 1 million load flow 200 G ~ < 10 s ~ < 3.5 s ~ 200 s (>15 hrs Matlab)

 Core i7 2670QM, quad-core, 2.2GHZ, AVX, Machine Peak: 140 Gflop/s

 Millions of load flow cases solved within SCADA interval

1

2

4

8

16

32

64

128

4 16 64 256

Performance

[Gflop/s]

C++Baseline Scalar

Scalar Pattern AVX

AVX Pattern MultiThread AVX

MultiThread AVX Pattern (Fully Optimized)

System Size

Performance Impact of Optimization & Parallelization on Core i7

>50x

flop/s: >60 % peak

Carnegie Mellon

 Convergence of Monte Carlo
 Crude MCS: MCG59+ICDF, 50 trials with “time(NULL)” seeds

 Converged MCS solution to PLF within SCADA Interval

 Accurate, generally-applicable, real time
14

Accuracy

-400 -200 0 200 400
0

1

2

3

4
x 10

-3

Active power, kw

In: Active Power
P~ u=0,std=100kw
on Phase A of Node
738,711,741

Carnegie Mellon

Applications

 Distribution System Probabilistic Monitoring System (DSPMS)
 System structure:

 Input: smart meters in campus building (MODBUS/TCP)

 Solver: MCS solver on multi-core desktop server (code optimization)

 Output: dynamic web interface via ECE web server (TCP/IP, JavaScript)

15

Campus Network

Web Server

@ ECE CMU

Web UI

Web UI

Web UI

Internet

Monte Carlo solver

Multi-core Desktop

Computing Server

Aggregator

MODBUS/TCP

Input

Output

Solver

Carnegie Mellon

User Interfaces

 Left: application 1 -- online forecasting (e.g. Gaussian error)

 Right: application 2 -- online impact assessment

 Live update, every 4 seconds (SCADA interval)

 Novel SCADA extension with full real time probabilistic analysis

16

http://users.ece.cmu.edu/~tcui/test/DistSim/DSPMS_RT.htm

Carnegie Mellon

 Distribution feeder probabilistic load flow (DPLF)

 Transmission grid probabilistic load flow (TPLF)

 AC contingency calculation (ACCC)

Substation

Distribution

Feeders

Transmission Grids

Substation

...
Distribution Feeders

Wind Farm

Power Plant Power Plant

 

 

,

,

Injection Network

Injection Network





P P V δ

Q Q V δ

Power Flow Model:

Algebraic Equation

Power Plant

Solar Panel

Wind Generator

Customer Load

Wind Speed

Load Level

P
ro

b
a

b
ili

ty

Probability

Distribution Function

Wind Speed

P
ro

b
a

b
ili

ty

Probability

Distribution Function

Outline: HPC in Substation

17

TPLF: Transmission PLF

ACCC: AC Contingency

DPLF: Distribution PLF

Carnegie Mellon

Transmission PLF: Background

 Related work on improving PLF solutions
 Simplified power system model:

 linearized, multi-linearized[Allan:1981][Silva:1990]

 Simplified probabilistic model:

 Interval[Wang:1992], point[Su:2005], cumulants[Zhang:2004]

 Improving Monte Carlo

 Variance reduction[Zhang:2009], deterministic sample[Liao:2007]

 Monte Carlo simulation as accuracy references

 Opportunities from computing hardware perspective
 Analytical method: not robust, not generally-applicable…

 Fully take advantages of the computing system

 Can we push the gold standard (MCS) into real time?

18

Input with
Randomness

Transmission
Load Flow

Model

Output
Probability

Features

Physical

Model

y

x

Carnegie Mellon

Fast Decoupled Power Flow

19

Linear solver

Mismatch

[Stott:1974] Stott, B.
Review of load-flow calculation methods
Proceedings of the IEEE, 1974, 62, 916 - 929

 Fast, fewest floating point operations[Stott:1974][Monticelli:1990]

[Monticelli:1990] Monticelli, A.; Garcia, A.; Saavedra, O.R.,
"Fast decoupled load flow: hypothesis, derivations, and testing,"
Power Systems, IEEE Transactions on , vol.5, no.4, pp.1425,1431, Nov 1990

Carnegie Mellon

0 50 100

0

20

40

60

80

100

nz = 371

Sparse L' by AMD

0 50 100

0

20

40

60

80

100

nz = 371

Sparse U' by AMD

Algorithm Optimization: Sparsity

 Linear solver: exploit sparsity -- Baseline
 Sparse LU factors by using AMD[Davis:2004]

 Speedup Matpower 4.1’s FDPF module

20

LU Factors of B’ of IEEE 118 system

[Davis:2004] P. Amestoy, T. Davis, and I. Duff,
“Algorithm 837: AMD, an approximate minimum degree ordering algorithm,”
ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 3, pp. 381–388, 2004

14 30 39 57 118 300 2383 2736 2737 2746 3012 3120
0

0.1

0.2

system size

ti
m

e
 (

s
)

fdpf with sparse LU

fdpf in Matpower 4.1

14 30 39 57 118 300 2383 2736 2737 2746 3012 3120
0

1

2

3

4

system size

s
p
e
e
d
u
p

0 50 100

0

20

40

60

80

100

nz = 1276

Original L'

0 50 100

0

20

40

60

80

100

nz = 1276

Original U'

Original

Improved

Speed Comparison

Carnegie Mellon

Data Structure/Math Func Optimization

 Linear solver
 New mixed compress column storage (CCS) format

 Mismatch

 sin/cos: >100 cycles v.s. mul/add: 1 cycle

 Efficient utilization: reduce sin cos operations e.g. sin(a-b)

 Efficient implementation: alternative version for SIMD datatype[Shibata:2010]

21

c1

value:

row idx

col ptr c2 c3

r1 r2 r3

v1 v2 v3

r4 r5 r6

v4 v5 v6

c1

mixed:

col ptr c2 c3

r1 r2 r3v1 v2 v3 r4 r5 r6v4 v5 v6

Original CCS:

Mixed CCS:

Original θ array: θ1 θ2 θN

Mixed θ array: θ2θ1 θNsinθ1 cosθ1 sinθ2 cosθ2 sinθN cosθN

...

...

[Shibata:2010] Naoki Shibata.
“Efficient evaluation methods of elementary functions suitable for SIMD Computation”.
Computer Science-Research and Development, 25(1-2):25–32, 2010.

Carnegie Mellon

Unrolling for Sparse Kernels

 General sparse kernel: traversal of the CCS sparse matrix
 Original: branch on every non-zero element

 Unrolled: pre-generate bigger code blocks for multiple columns

 Bigger code blocks -> better instruction level parallelism

22

for (col = 0; col < n; col++){
for (row = col_ptr[col]; row < col_ptr[col+1]; row++){

...// access & compute on nonzero at (col, row)
}

}

do{
switch (case_pattern for 2 consecutive columns){

case ...
case pattern(4,3): {

...// access & compute on nonzero at (i, 1)

...// access & compute on nonzero at (i, 2)

...// access & compute on nonzero at (i, 3)

...// access & compute on nonzero at (i, 4)

...// access & compute on nonzero at (i+1, 1)

...// access & compute on nonzero at (i+1, 2)

...// access & compute on nonzero at (i+1, 3)
break;}

case ...
}

}while(!all columns visited)

Unrolling

Column w/

4 nonzeros

Column w/

3 nonzeros

Carnegie Mellon

Multilevel Parallelism

 SIMD

 Multithread on multicore

23

SIMD FDPF Load Flow in Buf AN

SIMD FDPF Load Flow in Buf A2

SIMD FDPF Load Flow in Buf A1

Real Time Interval

(SCADA Interval)

Scheduling Thd 0

Computing Thd 2

Computing Thd 1

Computing Thd N

Sync Signal

KDE in all Buf Bs Result Out

SIMD FDPF Load Flow in Buf BN

SIMD FDPF Load Flow in Buf B2

SIMD FDPF Load Flow in Buf B1

Sync

Signal Out

Switch Buffer A,B

KDE in all Buf As Result Out

RNG: Random Number Generator

KDE: Kernel Density Estimation

Sample SIMD FDPF Load Flow Result

SIMD Instructions

Vector Register:

 4 floats in SSE

Carnegie Mellon

0

5

10

15

20

25

14 24 30 39 57 118 300 2383

Speed:

Gflop/s

Baseline Optimized Scalar

Optimized SSE Optimized AVX

Optimized SSE 4-core Optimized AVX 4-core

System Size (No. of Buses)System Size (No. of Buses)

Result: Performance Breakdown

 Optimizing iteration speed (on Core i7 2670QM)

 Upto 60x speedup comparing to scalar baseline (CXSparse)

 Converged MCS PLF solution every second

 24
Core i7 2670QM, quad-core, 2.2GHZ, AVX, 6MB Cache, Gaming Laptop

>60x

Carnegie Mellon

 Example on IEEE118 system
 Normal(0,10MW) and Uniform(-10MW,10MW) random active power plugged into first

three highest loading buses (Bus 59: 277MW, Bus 90: 163MW, Bus 116: 184MW)

 Converged MCS PLF solution every second

TPLF Result Example

25

Carnegie Mellon

 Distribution feeder probabilistic load flow (DPLF)

 Transmission grid probabilistic load flow (TPLF)

 AC contingency calculation (ACCC)

Substation

Distribution

Feeders

Transmission Grids

Substation

...
Distribution Feeders

Wind Farm

Power Plant Power Plant

 

 

,

,

Injection Network

Injection Network





P P V δ

Q Q V δ

Power Flow Model:

Algebraic Equation

Power Plant

Solar Panel

Wind Generator

Customer Load

Wind Speed

Load Level

P
ro

b
a

b
ili

ty

Probability

Distribution Function

Wind Speed

P
ro

b
a

b
ili

ty

Probability

Distribution Function

Outline: HPC in Substation

26

TPLF: Transmission PLF

ACCC: AC Contingency

DSPMS: Extension to SCADA/DMS

DPLF: Distribution PLF

Carnegie Mellon

Related Work

 Active joint field between power system & computing
 PNNL’s work on supercomputer approach

 Counter based load balancing[PNL_Massive:2009]

 Hybrid: Cray-XMT (selection) + cluster (ACCC) [PNL_Hyprid:2009]

 Multicore version ACCC in PTI PSS/E 33 & GE-PSLF SSTOOLS[PSSE][PSLF]

 Drexel’s GPU and FPGA approaches

 Iterative linear solver on GPU, DC power flow[Gopal_GPU:2010]

 FPGA accelerated for sparse linear solver[Johnson:2008]

 Unique opportunities on commodity CPUs
 Accelerate AC Contingency Calculation by fully utilizing CPU hardware?

27

Task

Level

Hardware

Carnegie Mellon

Our Approach

 What we have: optimized FDPF computing kernel from TPLF
 Efficient linear solver, mismatch computation /w multilevel parallelism

 What needed: deal with contingency, topology changes
 Goal: fine grain data parallelism for network of different outages?

 Date level: on single core, SIMD + compensation
 Preserves most parts of computations: compensation method

 Fully utilize the computing power of modern CPU core

 Task level: on multi-core, thread pool
 Convergence at different steps

 Dynamically balancing workload among cores

28

Carnegie Mellon

Topology Change

 Handle topology change
 Contingency analysis with line trip

 May change the problem formulation

 Branch outage representation in admittance matrix:
 Given admittance matrix Y, branch i j change Δy

 In FDPF, B’ and B” change accordingly

 In general, two approaches to handle topology changes
 LU re-factorization

 Compensation method based on Woodbury Identity[Stott_Compensation:1983]

29
[Stott_Compensation:1983] Alsac, O.; Stott, B.; Tinney, W.F.; ,
"Sparsity-Oriented Compensation Methods for Modified Network Solutions,"
Power Apparatus and Systems, IEEE Transactions on , vol.PAS-102, no.5, pp.1050-1060, May 1983

yc yc

i j ...

...

...

...

...

j i

j

i

nn

cll

lcl

yyy

yyy
























Δyl

Carnegie Mellon

Solution: Compensation

 Handle topology change based on compensation
 One possible compensation method:

 Given:

 Goal: Solve

 Compute using the lemma:

 Steps:

 Forward:

 Compensate:

 Backward:

30

FS

Compensate
Pre-compute

BS

Carnegie Mellon

Single Core: SIMD Implementation

 Mapping to fine grain parallel hardware

 In L, U and mismatch: 4 (SSE) or 8 (AVX) cases computed together

 In compensation: serialized and compensate every SIMD slot

 Iteration num determined by the largest iteration num of a SIMD pack
31

L solve U solveCompensate

L solve U solve

L solve U solve

L solve U solve

L solve U solve

MismatchOn FP Unit:

SIMD Unit:

Mismatch

Mismatch

Mismatch

Mismatch

Compensate

Linear Solver

for B’ or B’’

SIMD Inst. for

Multiple Cases

in SIMD Register

One Powerflow

Case

8 (single)

or 4 (double)

Powerflow

Cases of

Different

Topologies

Compensate

dY in Y

matrix

Compensate

P
a

c
k
e

d

P
a

c
k
e

d

P
a

c
k
e

d

SIMD Inst. for

Multiple Cases

in SIMD Register

SIMD Inst. for

Multiple Cases

in SIMD Register

Carnegie Mellon

 Scalar speed and AVX speedup on single core in Gflop/s

 Fully utilize single core with SIMD

 Better speedup on larger system

Single Core Results:

32
Core i7 2670QM, quad-core, 2.2GHZ, AVX, 6MB Cache, Gaming Laptop

0

1

2

3

4

5

6

14 24 30 39 57 118 300 2383 3120

Speed:

Gflop/s

Baseline Optimized Scalar

Optimized SSE Optimizaed AVX

System Size

Speed of ACCC Iterations (Scalar v.s. SIMD)

System Size

Speed of ACCC Iterations (Scalar v.s. SIMD)

Carnegie Mellon

Multi-Core: Thread Pool

 Main concern: balancing load among cores
 Thread pool scheduler

 Dynamically balancing large amount of small tasks of different
convergence steps

33

Worker

Thd 1

Worker

Thd 2

Worker

Thd N

Task Queue

Post

Processing

Dispatch Thd 0

Core 0 Core 1 Core 2 Core N

Wait on

Empty

Queue

Wait on

Empty

Queue

Wait on

Empty

Queue

SIMD Data Parallel SIMD Data Parallel SIMD Data Parallel

Multi-core Task Parallel

FDPF:

Instruction

Parallel

FDPF:

 Instruction

Parallel

FDPF:

 Instruction

Parallel

Carnegie Mellon

 Multi-core speed in Solved Cases / Second

 Fully utilize computing resources of multi-core CPUs

 Polish Grid N-1 line outage ACCC every second on 4-core Core i7
(~30x speedup over full compiler optimized baseline)

Multi-Core Results

34 Xeon X7560: 8-core, 2.26GHz, SSE, 24MB Cache, Server
Core i7 2670QM, quad-core, 2.2GHZ, AVX, 6MB Cache, Gaming Laptop

Tolerance: 1kW, Maximal Iteration: 20

0

500

1000

1500

2000

2500

3000

1 core 2 cores 3 cores 4 cores 5 cores 6 cores 7 cores

Solved Cases/

Second
8-core SSE Xeon X7560 4-core AVX Core i7 2670QM

CPU Cores Utilized

Polish Grid 3120-bus Summer Peak Case

CPU Cores Utilized

0

500

1000

1500

2000

2500

3000

3500

4000

1 core 2 cores 3 cores 4 cores 5 cores 6 cores 7 cores

Solved Cases/

Second
8-core SSE Xeon X7560 4-core AVX Core i7 2670QM

CPU Cores Utilized

Polish Grid 2383-bus Winter Peak Case

Total: 2252 line

outage cases

Total: 2962 line

outage cases

Carnegie Mellon

Summary

 DPLF: distribution PLF solver
 Millions of load flow cases within SCADA interval

 Real time accurate, generally-applicable PLF solution

 Novel full probabilistic SCADA extension

 TPLF: transmission PLF solver
 Optimized solver for fast decoupled power flow

 Converged accurate MCS PLF results every second for real time apps

 ACCC: accelerated AC contingency calculation
 Fully utilize HW computing capability: cache, instruction level, SIMD, multi-core

 Complete N-1 for entire national level network (Polish grid) every second

 HW/SW performance engineering leads to unique solution:
Computing enabled situational awareness in substations, control center
capability for real time applications targeting critical smart grid challenges

35

Carnegie Mellon

Substation

Distribution

Feeders

Transmission Grids

Substation

...
Distribution Feeders

Wind Farm

Power Plant Power Plant

 

 

,

,

Injection Network

Injection Network





P P V δ

Q Q V δ

Power Flow Model:

Algebraic Equation

Power Plant

Solar Panel

Wind Generator

Customer Load

Wind Speed

Load Level

P
ro

b
a

b
ili

ty

Probability

Distribution Function

Wind Speed

P
ro

b
a

b
ili

ty

Probability

Distribution Function

ACCC: Contingency

Summary

36

TPLF: Transmission PLF

 HW/SW performance engineering leads to unique solution:
Computing enabled situational awareness in substations, control center
capability for real time applications targeting critical smart grid challenges

DPLF: Distribution PLF

Carnegie Mellon

References
 [LBNL-3884E]. Mills, A. Implications of Wide-Area Geographic Diversity for Short-Term Variability of Solar Power, LBNL-3884E. Lawrence Berkeley National Laboratory, Berkeley,

 [ORNL/TM2004/291]. B. Kirby, "Frequency Regulation Basics and Trends," ORNL/TM 2004/291, Oak Ridge National Laboratory, December 2004.

 [Invest:2010] Kwok, Peter Jordan, “Electricity transmission investment in the United States : an investigation of adequacy”, M.Sc Thesis MIT 2010.

 [Jorgensen:1998] P. Jorgensen, J. S. Christensen and J. O. Tande, "Probabilistic load flow calculation using Monte Carlo techniques for distribution network with wind turbines," 8th International
Conference on Harmonics and Quality of Power, vol. 2, pp.1146-1151, 1998

 [Ruiz:2012] F. Ruiz-Rodriguez, J. Herna andndez, and F. Jurado, “Probabilistic load flow for radial distribution networks withphotovoltaic generators,” Renewable Power Generation, IET, vol. 6, no.
2, pp. 110 –121, 2012

 [Li:2012] G. Li and X.-P. Zhang, “Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations,” Smart Grid, IEEE Transactions on, vol. 3, no. 1, pp. 492 –499,
march 2012

 [Ghosh:1997] A. Ghosh, D. Lubkeman, M. Downey, and R. Jones, “Distribution circuit state estimation using a probabilistic approach,” IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 45 –
51, Feb 1997.

 [Caramia:2007] P. Caramia, G. Carpinelli, M. Pagano, and P. Varilone, “Probabilistic three-phase load flow for unbalanced electrical distribution systems with wind farms,” Renewable Power
Generation, IET, vol. 1, no. 2, pp. 115–122, 2007

 [Allan:1981] R. Allan, A. Leite da Silva, and R. Burchett, “Evaluation methods and accuracy in probabilistic load flow solutions,” IEEE Transactions on Power Apparatus and Systems , vol. PAS-100,
no. 5, pp. 2539 –2546, May 1981

 [Silva:1990] Leite Da Silva, A.M.; Arienti, V. L., "Probabilistic load flow by a multilinear simulation algorithm," Generation, Transmission and Distribution, IEE Proceedings C , vol.137, no.4,
pp.276,282, Jul 1990

 [Wang:1992] Wang, Z.; Alvarado, F.L., "Interval arithmetic in power flow analysis," Power Systems, IEEE Transactions on , vol.7, no.3, pp.1341,1349, Aug 1992

 [Su:2005] C. L. Su, "Probabilistic load-flow computation using point estimate method," IEEE Trans. Power Systems, vol. 20, no. 4, pp. 1843-1851, Nov. 2005

 [Zhang:2004] P. Zhang and S.T. Lee, "Probabilistic load flow computation using the method of combined and Gram-Charlier expansion," IEEE Trans. Power Systems, vol.19, no.1, pp. 676-682, Feb.
2004

 [Zhang:2009] G. Zhang, B. Zhang, H. Sun, and W. Wu, “Ultra-short Term Probabilistic Transmission Congestion Forecasting Considering Wind Power Integra-tion,” in Advances in Power System
Control, Operation and Management (APSCOM 2009), 8th International Conference on, Nov. 2009, pp. 1 –6

 [Liao:2007] H. Liao, “Fast Deterministic Sampling for Mean and Covariance Esti-mation in Stochastic Load Flow,” in Power Engineering Society General Meeting, 2007. IEEE, Jun 2007, pp. 1 –6.

 [Hajian:2012] M. Hajian, W. D. Rosehart, and H. Zareipour, “Probabilistic Power Flow by Monte Carlo Simulation with Latin Supercube Sampling,” Power Systems, IEEE Transactions on, vol. PP, no.
99, p. 1, 2012.

 [PNL_Hybrid:2009] I. Gorton, Z. Huang, Y. Chen, B. Kalahar, S. Jin, D. Chavarria-Miranda, D. Baxter, and J. Feo, “A high-performance hybrid computing approach to massive contingency analysis in
the power grid,” in e-Science, 2009. e-Science ’09. Fifth IEEE International Conference on, dec. 2009, pp. 277 –283

 [PNL_Massive:2009] Z. Huang, Y. Chen, and J. Nieplocha, “Massive contingency analysis with high performance computing,” in Power Energy Society General Meeting, 2009. PES ’09. IEEE, july
2009, pp. 1 –8.

 [Gopal_GPU:2010] A. Gopal, “DC power flow based contingency analysis using graphics processing units,” Master Thesis, Drexel ECE, 2010.

 [PSSE] Siemens-PTI, “PSS/E: Power System Simulator for Engineering.”

 [Johnson:2008] J. Johnson, T. Chagnon, P. Vachranukunkiet, P. Nagvajara, and C. Nwankpa, “Sparse LU decomposition using FPGA,” in International Workshop on State-of-the-Art in Scientific and
Parallel Computing (PARA), 2008.

 [Sanja:2011] Sanja Cvijic and Marija Ilic. Contingency screening in multi-control area system using coordinated DC power flow. ISGT Europe Manchester, UK, 2011.

 [Sanja:2012] Sanja Cvijic and Marija Ilic, "Optimal Clustering for Efficient Computations of Contingency Effects in Large Regional Power Systems", PES General Meeting in San Diego, July 2012

 [Johnson:2008] Jeremy Johnson, Tim Chagnon, Petya Vachranukunkiet, Prawat Nagvajara, and Chika Nwankpa. Sparse lu decomposition using fpga. In International Workshop on State-ofthe-Art in
Scientific and Parallel Computing (PARA), 2008.

37

Carnegie Mellon

The End

Thank you!

Q&A

38

