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 New players: stochastic, 
varying renewable 

 Challenges 
 Non-dispatchable, stochastic 

in nature, large variances  

 Great impact on the grids: 
present and future trend 

Smart Grid Challenges 

2 [N1] NERC Special Report: Accommodating High Levels of Variable Generation, 2009  
[N2] NERC Transmission System Standards – Normal and Emergency Conditions  

 Aged, varying conditions & 
close to limit operations 

 Challenges 
 High contingency possibility w/ 

severe consequences 

 Varying grid conditions require 
merging offline to online 

 Requirements from regulators (NERC) 
 Probabilistic analysis approaches from distribution feeder to bulk grid[N1] 

 Extensive contingency analysis for online / real time[N2] 

 Online computation tool for the smart grid challenges 

 

The Source: Probabilistic The Grid: Security 
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Commodity CPUs: No Free Speedup 

 Top 500 HPC in every substation? 

 

 

 
 

 

 
 

 

 
 Peak performance = fully utilize hardware capability 

 Much more complicated architecture ~ lose performance easily 

Performance in “flop/s”: floating point operations per second, the higher the better 

Core i7 3970x 
6-cores + AVX 
192 Gflop/s  
~$900 (Amazon) Image: Intel 

Q4’2012: 

500 Fastest 
Supercomputers 
Worldwide 

3 
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Supercomputer  

(Fujitsu NWT) 2000s 

High-end desktop (Dell) 

2012 

Commodity CPUs: Opportunity & Challenge 

4 
[hwloc] the hardware locality tool from open-mpi.org 
[Intel_opt] Intel® 64 and IA-32 Architectures Optimization Reference Manual  

 Memory hierarchy: #cache memory system 

 Multilevel parallelism:  

 *Multi-thread on multi-core CPU 

 ^Superscalar instruction scheduler: parallel scheduler inside each core 


$SIMD (Single Instruction Multiple Data): Intel AVX/SSE instruction set 

1 2 4 4 5 1 1 3

6 3 5 7 6 3 5 7

5 1 1 31 2 4 4

“+”: vaddps ADD

[Intel_opt] 

Source: Intel.com

*Multi-core 
$SIMD: Intel AVX 

#L1, L2, L3 

Cache 

memory 

system 

^Superscalar     

instruction 

scheduler 

Main Memory 

Image: Intel.com 
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Challenges for Smart Grids Applications 

 Computing 
 Exponential growth (Moore’s law) 

 Peak perf: fully using all computing units 

 Lose performance easily 

 Numerical application development 
 Example: MMM on Core 2 Duo 

 Gap between SW/HW for power system 

 Performance tuning for HW 

 Best math library? or best algorithm? 

5 

Goal: a win-win result 
Fully utilize the modern commodity computing systems, make new 
important and difficult smart grid probabilistic and security analysis 
problems solvable… in real time. 

?

≈ 

Supercomputer  

(Fujitsu NWT) 2000s 

High-end desktop 

(Dell) 2012 

160x
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Content 

 

 Distribution feeder probabilistic load flow (DPLF) 
 

 Transmission grid probabilistic load flow (TPLF) 
 

 AC contingency calculation (ACCC) 
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Goal: a win-win result 
Fully utilize the modern commodity computing systems, make new 
important and difficult smart grid probabilistic and security analysis 
problems solvable… in real time. 
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 Distribution feeder probabilistic load flow (DPLF) 

 Transmission grid probabilistic load flow (TPLF) 

 AC contingency calculation (ACCC) 
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TPLF: Transmission PLF 

ACCC: AC Contingency 

DPLF: Distribution PLF DPLF: Distribution PLF 
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Distribution PLF: Background 

 Fundamental tool for probabilistic analysis 
 Pseudo-measurements [Ghosh:1997] 

 Wind in distribution systems [Jorgensen:1998] [Caramia:2007] 

 Solar in distribution systems [Ruiz:2012] 

 EV in distribution systems [Li:2012] 

 Monte Carlo simulation as gold standard 
 

 Unique challenges in distribution systems 
 Unbalanced, multi-phase, complicated device models 

 Nonlinearity: regulator, control devices 

 Monte Carlo simulation: robust, generally-applicable, UNFEASIBLE online? 

 Our approaches[Cui_PES:2012] 

 Hardware / software performance engineering perspective 

 Pushing Monte Carlo simulation practical for online operations 

8 

Input with 
Randomness  

Distribution 
Load Flow 

Model 

Output 
Probability 

Features 

Physical 

Model 

y 

x 

[Cui_PES:2012] Tao Cui and Franz Franchetti.  
“A Multi-Core High Performance Computing Framework for Probabilistic Solutions of Distribution Systems”.  
IEEE PES-GM 2012 
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Our Approach 

 Random number generator 
 Basic uniform Pseudo RNG + transformation for different PDFs 

 Parallel strategy for multi-thread implementation 
 

 Optimized parallel distribution load flow solver 
 Code optimizations 

 Highly parallel implementation for Monte Carlo applications 
 

 Density estimation & visualization 
 Kernel density estimation 
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Load Flow Algorithm  

 Distribution system: 
 Radial , high R/X ratio, varying Z, unbalanced 

 NOT suitable for transmission load flow 

 IV Forward / Backward Sweep (FBS)[Zimmer:1995] 

 Implicit Z-matrix, detail model, fewest flops 

 Generalized component model[Kersting:2006] 

 One terminal node model: 
Constant PQ: 

 

 

 Two terminal link model: 

          

         

abc abc abcn m m

abc abc abcm n m

I c V d I

V A V B I

   

   

     
*

abc abc abcS V I 

One Terminal 

Node Model

A

B

C

[Vabc]

[Iabc]

[Sabc]

Source: IEEE PES Distribution 

System Analysis 

Subcommittee 

IEEE 37 NodeTest Feeder: 

Based on an actual feeder in California 

Backward: 

Forward: 

[Zimmer:1995] R. Zimmerman, “Comprehensive distribution power flow: modeling, formulation, solution algorithms and analysis,”  
Ph.D. dissertation, Cornell University, 1995. 
[Kersting:2006] William Kersting, Distribution System Modeling and Analysis.CRC, 2006 
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Node n Node m
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Code Optimization 

 Data structure optimization 
 Transform Baseline C++ to array access, exploit spatial/temporal locality 

 

 
 

 

 Algorithm-level optimization: pattern & unrolling 
 Pattern based matrix-vector multiplication for Kersting’s algorithm 

 

 

 Reduce unnecessary operations 

 Unrolling innermost loops 

 Similar to [Belgin:2009]: pattern SpMV 

 

 

 

N0

N2

N3 N4 N5

N1

Load

Substation

Load Load Load

Load

N0
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N3 N4 N5

C++ Tree Structure

pN0

pN1

pN2

pN3

pN4

Forward 

Sweep

Pointer 

Array

pN5

pN5

pN4

pN3
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Backward 

Sweep

Pointer 

Array

pN0

Array Access

N5 Data:

Parameters

Current

Voltage

N4 Data:

Parameters

Current

Voltage

Consecutive 

in Data Array
...

switch (mat_type){

case real_diag_equal_mat:

output[0] = *constant * input[0];

...              

output[5] = *constant * input[5];

break;

case imag_diag_equal_mat:

output[0] = -*constant * input[3];

output[1] = -*constant * input[4];

output[2] = -*constant * input[5];

output[3] = *constant * input[0];

output[4] = *constant * input[1];

output[5] = *constant * input[2];

break;

...

}

mat_type

a,0,0,0,b,0,0,0,c a,b,c
+

Full Matrix
Compressed

         

         

abc abc abcn m m

abc abc abcm n m

I c V d I

V A V B I

   

   

[Belgin:2009]. M. Belgin, G. Back, and C. J. Ribbens,  
“Pattern-based sparse matrix representation for memory-efficient SMVM kernels,”  
in Proceedings of the 23rd international conference on Supercomputing, ser. ICS ’09. New York, NY, USA: ACM, 2009, pp. 100–109. 
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 Data level (SIMD) 

 

 

 Task/core level 

 

 

 

 

 

 
 Realtime MCS scheduler: task decomposition, double buffer, auto-balancing) 

 Fully utilize computation power of multi-core CPUs 

SIMD FBS Load Flow in Buf AN

SIMD FBS Load Flow in Buf A2

SIMD FBS Load Flow in Buf A1

Real Time Interval

(SCADA Interval)

Scheduling Thd 0

Computing Thd 2

Computing Thd 1

Computing Thd N

Sync Signal

KDE in all Buf Bs Result Out

SIMD FBS Load Flow in Buf BN

SIMD FBS Load Flow in Buf B2

SIMD FBS Load Flow in Buf B1

Sync 

Signal Out

Switch Buffer A,B

KDE in all Buf As Result Out

RNG: Random Number Generator

KDE: Kernel Density Estimation

12 

Parallel MCS with Real Time Considerations 

Sample FBS Load Flow Result

Sample SIMD FBS Load Flow Result

SIMD Instructions

Scalar Instructions

Scalar Solver:

Vectorized Solver:

Vector Register:

 4 floats in SSE

Scalar Register:

1 float
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Details: Performance Gains 
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Problem Size  
(IEEE Test Feeders) 

Approx.
flops 

Approx. Time / 
 Core2 Extreme 

Approx. Time  
/ Core i7 

Baseline. C++ ICC –o3 
(~300x faster then pure 
Matlab scripts)  

Comments 

IEEE37: one iteration 12 K ~ 0.3 us ~ 0.3 us 0.01 kVA 
mismatch 
 
SCADA Interval:  
4 seconds 

IEEE37: one load flow (5 Iter) 60 K ~ 1.5 us ~ 1.5 us 

IEEE37: 1 million load flow 60 G ~ < 2 s ~ < 1 s ~ 60 s (>5 hrs Matlab) 

IEEE123: 1 million load flow 200 G ~ < 10 s ~ < 3.5 s ~ 200 s (>15 hrs Matlab) 

 Core i7 2670QM, quad-core, 2.2GHZ, AVX, Machine Peak: 140 Gflop/s 

 Millions of load flow cases solved within SCADA interval 

 

1

2

4

8

16

32

64

128

4 16 64 256

Performance 

[Gflop/s]

C++Baseline Scalar

Scalar Pattern AVX

AVX Pattern MultiThread AVX

MultiThread AVX Pattern (Fully Optimized)

System Size

Performance Impact of Optimization & Parallelization on Core i7

>50x 

flop/s: >60 % peak 



Carnegie Mellon 

 Convergence of Monte Carlo 
 Crude MCS: MCG59+ICDF, 50 trials with “time(NULL)” seeds 

 

 

 

 

 

 

 

 

 

 

 Converged MCS solution to PLF within SCADA Interval 

 Accurate, generally-applicable, real time 
14 

Accuracy 

-400 -200 0 200 400
0

1

2

3

4
x 10

-3

Active power, kw

In: Active Power 
P~ u=0,std=100kw 
on Phase A of Node 
738,711,741  
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Applications 

 Distribution System Probabilistic Monitoring System (DSPMS) 
 System structure: 

 

 

 

 

 

 

 

 

 Input: smart meters in campus building (MODBUS/TCP) 

 Solver: MCS solver on multi-core desktop server (code optimization) 

 Output: dynamic web interface via ECE web server (TCP/IP, JavaScript) 

15 

Campus Network

Web Server 

@ ECE CMU

Web UI

Web UI

Web UI

Internet

Monte Carlo solver

Multi-core Desktop 

Computing Server

Aggregator

MODBUS/TCP

Input 

Output 

Solver 
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User Interfaces 

 Left: application 1 -- online forecasting (e.g. Gaussian error) 

 Right: application 2 -- online impact assessment 

 

 

 

 

 

 

 
 Live update, every 4 seconds (SCADA interval) 

 Novel SCADA extension with full real time probabilistic analysis 

16 

http://users.ece.cmu.edu/~tcui/test/DistSim/DSPMS_RT.htm
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 Distribution feeder probabilistic load flow (DPLF) 

 Transmission grid probabilistic load flow (TPLF) 

 AC contingency calculation (ACCC) 
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TPLF: Transmission PLF 

ACCC: AC Contingency 

DPLF: Distribution PLF 
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Transmission PLF: Background 

 Related work on improving PLF solutions 
 Simplified power system model:  

 linearized, multi-linearized[Allan:1981][Silva:1990] 

 Simplified probabilistic model:  

 Interval[Wang:1992], point[Su:2005], cumulants[Zhang:2004] 

 Improving Monte Carlo 

 Variance reduction[Zhang:2009], deterministic sample[Liao:2007] 

 Monte Carlo simulation as accuracy references 
 

 Opportunities from computing hardware perspective 
 Analytical method: not robust, not generally-applicable… 

 Fully take advantages of the computing system 

 Can we push the gold standard (MCS) into real time? 

18 
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Fast Decoupled Power Flow 

19 

Linear solver 

Mismatch 

[Stott:1974] Stott, B. 
Review of load-flow calculation methods 
Proceedings of the IEEE, 1974, 62, 916 - 929  

 Fast, fewest floating point operations[Stott:1974][Monticelli:1990] 

[Monticelli:1990] Monticelli, A.; Garcia, A.; Saavedra, O.R.,  
"Fast decoupled load flow: hypothesis, derivations, and testing,"  
Power Systems, IEEE Transactions on , vol.5, no.4, pp.1425,1431, Nov 1990 
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Algorithm Optimization: Sparsity 

 Linear solver: exploit sparsity -- Baseline 
 Sparse LU factors by using AMD[Davis:2004] 

 Speedup Matpower 4.1’s FDPF module 
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LU Factors of B’ of IEEE 118 system 

[Davis:2004] P. Amestoy, T. Davis, and I. Duff,  
“Algorithm 837: AMD, an approximate minimum degree ordering algorithm,”  
ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 3, pp. 381–388, 2004 
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Data Structure/Math Func Optimization 

 Linear solver 
 New mixed compress column storage (CCS) format 

 

 

 

 

 

 Mismatch 
 

 
 

 sin/cos: >100 cycles v.s. mul/add: 1 cycle 

 Efficient utilization: reduce  sin cos operations e.g. sin(a-b) 

 Efficient implementation: alternative version for SIMD datatype[Shibata:2010] 

 
21 

c1

value:

row idx

col ptr c2 c3

r1 r2 r3

v1 v2 v3

r4 r5 r6

v4 v5 v6

c1

mixed:

col ptr c2 c3

r1 r2 r3v1 v2 v3 r4 r5 r6v4 v5 v6

Original CCS:

Mixed CCS:

Original θ array: θ1 θ2 θN

Mixed θ array: θ2θ1 θNsinθ1 cosθ1 sinθ2 cosθ2 sinθN cosθN

...

...

[Shibata:2010] Naoki Shibata.  
“Efficient evaluation methods of elementary functions suitable for SIMD Computation”.  
Computer Science-Research and Development, 25(1-2):25–32, 2010. 
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Unrolling for Sparse Kernels 

 General sparse kernel: traversal of the CCS sparse matrix 
 Original: branch on every non-zero element 

 Unrolled: pre-generate bigger code blocks for multiple columns 

 Bigger code blocks -> better instruction level parallelism 

22 

for (col = 0; col < n; col++){
for (row = col_ptr[col]; row < col_ptr[col+1]; row++){

...// access & compute on nonzero at (col, row)
}

}

do{
switch (case_pattern for 2 consecutive columns){

case ...
case pattern(4,3): {

...// access & compute on nonzero at (i, 1)

...// access & compute on nonzero at (i, 2)

...// access & compute on nonzero at (i, 3)

...// access & compute on nonzero at (i, 4)

...// access & compute on nonzero at (i+1, 1)

...// access & compute on nonzero at (i+1, 2)

...// access & compute on nonzero at (i+1, 3)
break;}

case ...
}

}while(!all columns visited)

Unrolling

Column w/ 

4 nonzeros 

Column w/ 

3 nonzeros 
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Multilevel Parallelism 

 SIMD 

 

 

 

 Multithread on multicore 

23 

SIMD FDPF Load Flow in Buf AN

SIMD FDPF Load Flow in Buf A2

SIMD FDPF Load Flow in Buf A1

Real Time Interval

(SCADA Interval)

Scheduling Thd 0

Computing Thd 2

Computing Thd 1

Computing Thd N

Sync Signal

KDE in all Buf Bs Result Out

SIMD FDPF Load Flow in Buf BN

SIMD FDPF Load Flow in Buf B2

SIMD FDPF Load Flow in Buf B1

Sync 

Signal Out

Switch Buffer A,B

KDE in all Buf As Result Out

RNG: Random Number Generator

KDE: Kernel Density Estimation

Sample SIMD FDPF Load Flow Result

SIMD Instructions

Vector Register:

 4 floats in SSE
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Result: Performance Breakdown 

 Optimizing iteration speed (on Core i7 2670QM) 

 

 

 
 

 

 

 

 

 

 Upto 60x speedup comparing to scalar baseline (CXSparse) 

 Converged MCS PLF solution every second 

 24 
Core i7 2670QM, quad-core, 2.2GHZ, AVX, 6MB Cache, Gaming Laptop 

>60x 
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 Example on IEEE118 system  
 Normal(0,10MW) and Uniform(-10MW,10MW) random active power plugged into first 

three highest loading buses (Bus 59: 277MW, Bus 90: 163MW, Bus 116: 184MW) 

 Converged MCS PLF solution every second 

TPLF Result Example 

25 
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 Distribution feeder probabilistic load flow (DPLF) 

 Transmission grid probabilistic load flow (TPLF) 

 AC contingency calculation (ACCC) 
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TPLF: Transmission PLF 

ACCC: AC Contingency 

DSPMS: Extension to SCADA/DMS 

DPLF: Distribution PLF 
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Related Work 

 Active joint field between power system & computing 
 PNNL’s work on supercomputer approach 

 Counter based load balancing[PNL_Massive:2009] 

 Hybrid: Cray-XMT (selection) + cluster (ACCC) [PNL_Hyprid:2009] 

 Multicore version ACCC in PTI PSS/E 33 & GE-PSLF SSTOOLS[PSSE][PSLF] 

 Drexel’s GPU and FPGA approaches 

 Iterative linear solver on GPU, DC power flow[Gopal_GPU:2010] 

 FPGA accelerated for sparse linear solver[Johnson:2008] 

 

 Unique opportunities on commodity CPUs 
 Accelerate AC Contingency Calculation by fully utilizing CPU hardware? 

 

27 

Task 

Level 

Hardware 
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Our Approach 

 What we have: optimized FDPF computing kernel from TPLF 
 Efficient linear solver, mismatch computation /w multilevel parallelism 

 

 What needed: deal with contingency, topology changes 
 Goal: fine grain data parallelism for network of different outages? 

 

 Date level: on single core, SIMD + compensation 
 Preserves most parts of computations: compensation method  

 Fully utilize the computing power of modern CPU core 
 

 Task level: on multi-core, thread pool 
 Convergence at different steps 

 Dynamically balancing workload among cores 

28 
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Topology Change 

 Handle topology change 
 Contingency analysis with line trip 

 May change the problem formulation 

 Branch outage representation in admittance matrix: 
 Given admittance matrix Y, branch i j change Δy 

 

 

 In FDPF, B’ and B” change accordingly 

 In general, two approaches to handle topology changes 
 LU re-factorization 

 Compensation method based on Woodbury Identity[Stott_Compensation:1983]  

 

29 
[Stott_Compensation:1983] Alsac, O.; Stott, B.; Tinney, W.F.; ,  
"Sparsity-Oriented Compensation Methods for Modified Network Solutions,"  
Power Apparatus and Systems, IEEE Transactions on , vol.PAS-102, no.5, pp.1050-1060, May 1983 
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Solution: Compensation 

 Handle topology change based on compensation 
 One possible compensation method: 

 Given: 

 Goal: Solve 

 Compute using the lemma: 

 

 Steps: 

 Forward: 

 Compensate: 

 
 

 

 Backward: 

30 

FS 

Compensate 
Pre-compute 

BS 
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Single Core: SIMD Implementation 

 Mapping to fine grain parallel hardware 

 

 

 

 

 

 

 
 
 

 In L, U and mismatch: 4 (SSE) or 8 (AVX) cases computed together 

 In compensation: serialized and compensate every SIMD slot 

 Iteration num determined by the largest iteration num of a SIMD pack 
31 

L solve U solveCompensate

L solve U solve

L solve U solve

L solve U solve

L solve U solve
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 Scalar speed and AVX speedup on single core in Gflop/s 
 

 

 
 

 

 
 

 

 

 

 

 Fully utilize single core with SIMD 

 Better speedup on larger system 

Single Core Results: 
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Multi-Core: Thread Pool 

 Main concern: balancing load among cores 
 Thread pool scheduler 

 

 

 

 

 

 

 

 
 
 

 Dynamically balancing large amount of small tasks of different 
convergence steps 
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 Multi-core speed in Solved Cases / Second 
 

 

 

 

 

 
 

 

 Fully utilize computing resources of multi-core CPUs 

 Polish Grid N-1 line outage ACCC every second on 4-core Core i7 
(~30x speedup over full compiler optimized baseline) 

Multi-Core Results 

34 Xeon X7560: 8-core, 2.26GHz, SSE, 24MB Cache, Server 
Core i7 2670QM, quad-core, 2.2GHZ, AVX, 6MB Cache, Gaming Laptop 

Tolerance: 1kW, Maximal Iteration: 20 

0

500

1000

1500

2000

2500

3000

1 core 2 cores 3 cores 4 cores 5 cores 6 cores 7 cores

Solved Cases/

Second
8-core SSE Xeon X7560 4-core AVX Core i7 2670QM

CPU Cores Utilized

Polish Grid 3120-bus Summer Peak Case 

CPU Cores Utilized

0

500

1000

1500

2000

2500

3000

3500

4000

1 core 2 cores 3 cores 4 cores 5 cores 6 cores 7 cores

Solved Cases/

Second
8-core SSE Xeon X7560 4-core AVX Core i7 2670QM

CPU Cores Utilized

Polish Grid 2383-bus Winter Peak Case

Total: 2252 line 

outage cases  

Total: 2962 line 

outage cases  



Carnegie Mellon 

Summary 

 DPLF: distribution PLF solver 
 Millions of load flow cases within SCADA interval 

 Real time accurate, generally-applicable PLF solution 

 Novel full probabilistic SCADA extension 
 

 TPLF: transmission PLF solver 
 Optimized solver for fast decoupled power flow 

 Converged accurate MCS PLF results every second for real time apps 
 

 ACCC: accelerated AC contingency calculation 
 Fully utilize HW computing capability: cache, instruction level, SIMD, multi-core 

 Complete N-1 for entire national level network (Polish grid) every second 
 

 

 

 

 HW/SW performance engineering leads to unique solution:      
Computing enabled situational awareness in substations, control center 
capability for real time applications targeting critical smart grid challenges 
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TPLF: Transmission PLF 

  
  

  

  
 

  
  

  
 

  
 

  
 

   

 

 HW/SW performance engineering leads to unique solution:      
Computing enabled situational awareness in substations, control center 
capability for real time applications targeting critical smart grid challenges 

DPLF: Distribution PLF 
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The End 

Thank you! 

Q&A 
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