
The GridPACK™ Toolkit for Developing
Power Grid Simulations on High
Performance Computing Platforms

Bruce Palmer, Bill Perkins, Kevin Glass, Yousu
Chen, Shuangshuang Jin, Ruisheng Diao, Mark
Rice, David Callahan, Steve Elbert, Henry
Huang

Objective

Develop a framework to support the rapid development of
power grid software applications on HPC platforms

Extend the penetration of HPC in power grid modeling

Provide high level abstractions for often-used motifs in
power grid applications

Reduce the amount of explicit communication that must
be handled by developers

Allow power grid application developers to focus on
physics and algorithms and not on parallel computing

Power Grid Computing Requirements

Must be able to manage distributed graphs that represent
the power grid network topology

Support distributed matrices and vectors and implement
parallel solvers and preconditioners. Solution algorithms
are usually expressed in terms of linear or non-linear
algebraic equations

Map elements from distributed network to matrices and
vectors and back to network

Core

Data

Objects

Power Grid

Network and

Fields

Matrices and

Vectors

Network

Components

• Neighbor Lists

• Matrix Elements

Application Factory Solver

Math Module

• PETSc
Mapper

Network Module

• Ghost

Exchanges

• Partitioning

Matrix and

Vector Module

• PETSc

Applications

Import Module

• PTI Formats

• Dictionary

Export Module

• Serial IO

• PTI Formats

GridPACK™ Framework

Configure

Module

• XML

GridPACK™ Software Stack

Utilities

• Errors

• Logging

• Profiling

Approach

Develop software modules that encapsulate commonly used
functionality in HPC power grid applications

Setup and distribution of power grid networks

Input/Output

Mapping from grid to distributed matrices

Parallel solvers

Incorporate advanced parallel libraries whenever possible

PETSc, ParMETIS

GridPACK™ Modules

Network: Manages the topology, neighbor lists, parallel
distribution and indexing. Acts as a container for bus and
branch components and manages data exchanges
between network components

Math: Create distributed matrices and vectors and
implement parallel solvers and preconditioners. Math
module is a thin wrapper on top of existing solver libraries

Network Components: Provide base functionality for
describing behavior of buses and branches and define
functions needed to set up matrices and vectors

Mapper: Create map between distributed network
components and distributed matrices and vectors. Enable
construction of matrices and vectors directly from network
components

Network Component

Responsible for managing network topology

Distributed components over processors

Set up data exchanges between ghost elements and data
located on other processors

Partitioning the Network

Process 0 Process 1

Process 0 Partition

Process 0

Ghost Buses

and

Branches

Process 1 Partition

Process 1

Ghost Buses

and

Branches

Math Module

Currently built on top of PETSc libraries

Supports distributed matrices and vectors

Matrices can be stored in either sparse or dense formats

Implements parallel linear and non-linear solvers as well
as preconditioners

Supports basic algebraic operations

Matrix-vector multiply

Scaling

Vector addition

Etc.

Network Components

Most of the application-specific functionality is
implemented in the network components

Application components are derived from component
base classes that define functions that must be
implemented in order for other GridPACK™ modules to
function

Separate application components are defined for
branches and buses

Component Class Hierarchy

MatVecInterface

BaseComponent

BaseBusComponent BaseBranchComponent

AppBusComponent AppBranchComponent

The MatVecInterface

Designed to allow the GridPACK™ framework to
generate matrices and vectors from individual bus and
branch components

Buses and branches are responsible for describing their
individual contribution to matrices and vectors

Buses and branches are NOT responsible for determining
location in matrix or vector and are NOT responsible for
distributing matrices or vectors

Base Network Components

BaseComponent provides a few methods that are needed
by all network components (bus or branch). Sets up
buffers used for ghost bus and ghost branch exchanges
and defines methods for initializing components and
changing component behavior

BaseBusComponent provides access to branches
attached to bus and keeps track of reference bus

BaseBranchComponent provides access to buses at
either end of branch

Typical Component Calculation

𝑌𝑏𝑟𝑎𝑛𝑐ℎ𝑚𝑛 =
−1

𝑟𝑚𝑛𝑘 + 𝑗𝑥𝑚𝑛𝑘
𝑘

𝑌𝑏𝑢𝑠𝑚𝑚 = 𝑆𝑏𝑢𝑠𝑚𝑚 − 𝑌𝑏𝑟𝑎𝑛𝑐ℎ𝑚𝑛
𝑛≠𝑚

Ignore values

of indices m

and n. These

are evaluated

by mapper

Mapper

Provide a flexible framework for constructing matrices and
vectors representing power grid equations

Hide the index transformations and partitioning required
to create distributed matrices and vectors from application
developers

Developers can focus on evaluating contributions to
matrices and vectors coming from individual network
elements

These are local calculations that only depend on
neighboring network elements

1 2 3

4

5

6

7
8

12

11

10 9

Network Fragment

1 2 3

4

5

6

7
8

12

11

10 9

No matrix

contribution

No matrix

contribution

No matrix

contribution

Matrix Contributions from Network
Components

Matrix Generation

Initial Placement
Final Matrix

Powerflow Application using GridPACK™
 1 typdef BaseNetwork<PFBus,PFBranch> PFNetwork;

 2 Communicator world;

 3 shared_ptr<PFNetwork>

 4 network(new PFNetwork(world));

 5

 6 PTI23_parser<PFNetwork> parser(network);

 7 parser.parse("network.raw");

 8 network->partition();

 9

10 PFFactory factory(network);

11 factory.load();

12 factory.setComponents();

13 factory.setExchange();

14

15 network->initBusUpdate();

16 factory.setYBus();

17 factory.setMode(YBus);

18 FullMatrixMap<PFNetwork> mMap(network);

19 shared_ptr<Matrix> Y = mMap.mapToMatrix();

20

21 factory.setSBus();

22 factory.setMode(RHS);

23 BusVectorMap<PFNetwork> vMap(network);

24 shared_ptr<Vector> PQ = vMap.mapToVector();

Create network object

Read in and partition

network from external

file

Initialize network

components and set up

ghost exchanges

Create Y-matrix

Create RHS vector

for power flow

equations

Powerflow Application using GridPACK™
26 factory.setMode(Jacobian);

27 FullMatrixMap<PFNetwork> jMap(network);

28 shared_ptr<Matrix> J = jMap.mapToMatrix();

29 shared_ptr<Vector> X(PQ->clone());

30

31 double tolerance = 1.0e-6;

32 int max_iteration = 100;

33 ComplexType tol = 2.0*tolerance;

34 LinearSolver isolver(*J);

35

36 int iter = 0;

37

38 // Solve matrix equation J*X = PQ

39 isolver.solve(*PQ, *X);

40 tol = X->norm2();

41

42 while (real(tol) > tolerance &&

43 iter < max_iteration) {

44 factory.setMode(RHS);

44 vMap.mapToBus(X);

45 network->updateBuses();

46 factory.setMode(RHS);

47 vMap.mapToVector(PQ);

48 factory.setMode(Jacobian);

49 jMap.mapToMatrix(J);

50 LinearSolver solver(*J);

51 solver.solve(*PQ, *X);

52 tol = X->norm2();

53 iter++;

54 }

Newton-

Raphson

loop

Create Jacobian

and solution vector

Create linear solver and

evaluate initial solution

Project solution back onto network
Exchange data between network

components

Summary

Major modules that are currently available

Network and partitioner

Import module for PTI v23 format files

Math module for distributed matrices, vectors and solvers

Mapper for generating matrices and vectors from network
components

Export of data from network to standard out

Base component and factory classes that support
application development

Configuration module for managing input from external user
files

Timer module for profiling

Power flow application completed

Download from https://gridpack.org

Acknowledgments

U.S. Department of Energy’s Office of Electricity through
its Advanced Grid Modeling Program.

Future Power Grid Initiative Lab Directed Research and
Development Program at Pacific Northwest National
Laboratory

